h- and p-adaptivity driven by recovery and residual-based error estimators for PHT-splines applied to time-harmonic acoustics
暂无分享,去创建一个
Stéphane Bordas | Elena Atroshchenko | Tahsin Khajah | Cosmin Anitescu | Javier Videla | S. Bordas | C. Anitescu | E. Atroshchenko | J. Videla | T. Khajah
[1] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[2] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[3] Wim Desmet,et al. A performance study of NURBS-based isogeometric analysis for interior two-dimensional time-harmonic acoustics , 2016 .
[4] Pascal Bouvry,et al. Management of an academic HPC cluster: The UL experience , 2014, 2014 International Conference on High Performance Computing & Simulation (HPCS).
[5] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[6] Haijun Wu,et al. Isogeometric finite element analysis of interior acoustic problems , 2015 .
[7] Marc Duflot,et al. Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .
[8] I. Babuska,et al. Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .
[9] Philippe Lasaygues,et al. Ultrasonic Computed Tomography , 2011 .
[10] J. Scruggs,et al. Harvesting Ocean Wave Energy , 2009, Science.
[11] S. Nicaise,et al. High-frequency behaviour of corner singularities in Helmholtz problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[12] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[13] G. Sangalli,et al. IsoGeometric analysis using T-splines on two-patch geometries , 2011 .
[14] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[15] Jon Trevelyan,et al. High-order finite elements for the solution of Helmholtz problems , 2017 .
[16] Mark Ainsworth,et al. Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..
[17] Isaac Harari,et al. A survey of finite element methods for time-harmonic acoustics , 2006 .
[18] S. Bordas,et al. A simple error estimator for extended finite elements , 2007 .
[19] N. Booij,et al. A third-generation wave model for coastal regions-1 , 1999 .
[20] J. Tinsley Oden,et al. A posteriori error estimation for acoustic wave propagation problems , 2005 .
[21] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[22] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[23] Christophe Geuzaine,et al. Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models , 2009, J. Comput. Phys..
[24] D. Givoli. High-order local non-reflecting boundary conditions: a review☆ , 2004 .
[25] Joao Cruz,et al. Ocean Wave Energy: Current Status and Future Prespectives , 2008 .
[26] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[27] N. Nguyen-Thanh,et al. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics , 2014 .
[28] Trond Kvamsdal,et al. Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis , 2017 .
[29] H. Nguyen-Xuan,et al. Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .
[30] G. M. L. Gladwell,et al. A variational formulation of damped acousto structural vibration problems , 1966 .
[31] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[32] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[33] Thomas-Peter Fries,et al. Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.
[34] L. Thompson. A review of finite-element methods for time-harmonic acoustics , 2006 .
[35] Thomas J. R. Hughes,et al. Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality , 1996 .
[36] Xavier Antoine,et al. Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape , 1999 .
[37] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[38] Alessandro Gardi,et al. Acoustic Sensors for Air and Surface Navigation Applications , 2018, Sensors.
[39] Timon Rabczuk,et al. An isogeometric collocation method using superconvergent points , 2015 .
[40] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .
[41] Elena Atroshchenko,et al. Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub‐ and super‐geometric analysis to Geometry‐Independent Field approximaTion (GIFT) , 2016, 1706.06371.
[42] Joseph B. Keller,et al. A hybrid numerical asymptotic method for scattering problems , 2001 .
[43] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[44] Naim Hossain,et al. Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes , 2018 .
[45] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[46] Ari Ben-Menahem,et al. Seismic waves and sources , 1981 .
[47] M. Gunzburger,et al. Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .
[48] Gulshan,et al. Theoretical analysis of extreme wave oscillation in Paradip Port using a 3-D boundary element method , 2018, Ocean Engineering.
[49] C. Geuzaine,et al. An Amplitude Formulation to Reduce the Pollution Error in the Finite Element Solution of Time-Harmonic Scattering Problems , 2008, IEEE Transactions on Magnetics.
[50] T. Rabczuk,et al. T-spline based XIGA for fracture analysis of orthotropic media , 2015 .
[51] A. Bayliss,et al. Radiation boundary conditions for wave-like equations , 1980 .
[52] S. Bordas,et al. A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .
[53] M. Dinachandra,et al. Plane wave enriched Partition of Unity Isogeometric Analysis (PUIGA) for 2D-Helmholtz problems , 2018, Computer Methods in Applied Mechanics and Engineering.
[54] N. Nguyen‐Thanh,et al. Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions , 2017 .
[55] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[56] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[57] Vinh Phu Nguyen,et al. Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..
[58] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[59] Eli Turkel,et al. On surface radiation conditions for an ellipse , 2010, J. Comput. Appl. Math..
[60] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[61] J. Trevelyan,et al. Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .
[62] Pablo Gamallo,et al. Comparison of two wave element methods for the Helmholtz problem , 2006 .
[63] Ivo Babuška,et al. The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .
[64] O. C. Zienkiewicz,et al. Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems , 1999 .
[65] Jens Markus Melenk,et al. Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..
[66] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .