Continuous variables quantum computation over the vibrational modes of a single trapped ion

Abstract We consider the quantum processor based on a chain of trapped ions to propose an architecture wherein the motional degrees of freedom of trapped ions (position and momentum) could be exploited as the computational Hilbert space. We adopt a continuous-variables approach to develop a toolbox of quantum operations to manipulate one or two vibrational modes at a time. Together with the intrinsic non-linearity of the qubit degree of freedom, employed to mediate the interaction between modes, arbitrary manipulation and readout of the ionic wave function could be achieved.

[1]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[2]  One step to generate quantum controlled phase-shift gate using a trapped ion , 2008 .

[3]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[4]  M. S. Silver,et al.  Highly selective {π}/{2} and π pulse generation , 1984 .

[5]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[6]  F. Schmidt-Kaler,et al.  Interaction of a laser with a qubit in thermal motion and its application to robust and efficient readout , 2011 .

[7]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[8]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[9]  N. Vitanov,et al.  Robust control of quantized motional states of a chain of trapped ions by collective adiabatic passage , 2008, 0801.1588.

[10]  K. Sengupta,et al.  Nonequilibrium phonon dynamics in trapped-ion systems , 2011, 1201.0064.

[11]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[12]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[13]  K. Mølmer,et al.  Sympathetic Wigner-function tomography of a dark trapped ion , 2011, 1110.4804.

[14]  F. Nicacio,et al.  Motional entanglement with trapped ions and a nanomechanical resonator , 2012, 1212.0711.

[15]  M. K. Tavassoly,et al.  Generation of nonlinear motional trio coherent states and their nonclassical properties , 2012 .

[16]  Gareth A. Morris,et al.  A simple pulse sequence for selective excitation in Fourier transform NMR , 1976 .

[17]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[18]  M. B. Plenio,et al.  Manipulating the quantum information of the radial modes of trapped ions: linear phononics, entanglement generation, quantum state transmission and non-locality tests , 2008, 0809.4287.

[19]  R. R. Ernst,et al.  Interference effects in NMR correlation spectroscopy of coupled spin systems , 1976 .

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  Carlton M. Caves,et al.  Sufficient Conditions for Efficient Classical Simulation of Quantum Optics , 2015, 1511.06526.

[22]  C. Monroe,et al.  Ultrafast spin-motion entanglement and interferometry with a single atom. , 2012, Physical review letters.

[23]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[24]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[25]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[26]  Jing Zhang,et al.  Engineering of nonclassical motional states in optomechanical systems , 2012, 1210.0070.

[27]  Marco G. Genoni,et al.  Detecting quantum non-Gaussianity via the Wigner function , 2013, 1304.3340.

[28]  Christian F. Roos,et al.  Ion trap quantum gates with amplitude-modulated laser beams , 2007, 0710.1204.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[31]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[32]  Pines,et al.  Broadband and adiabatic inversion of a two-level system by phase-modulated pulses. , 1985, Physical review. A, General physics.

[33]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[34]  P. Schmidt,et al.  Detection of motional ground state population of a trapped ion using delayed pulses , 2015, 1510.00063.

[35]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[36]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[37]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[38]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[39]  Generation of a C-NOT gate using a trapped ion , 2005 .

[40]  Ying Li,et al.  Hierarchical surface code for network quantum computing with modules of arbitrary size , 2015, 1509.07796.

[41]  Enrique Solano,et al.  DETERMINISTIC BELL STATES AND MEASUREMENT OF THE MOTIONAL STATE OF TWO TRAPPED IONS , 1999 .

[42]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[43]  Daniel F. V. James,et al.  Proposal for a scalable universal bosonic simulator using individually trapped ions , 2012, 1205.1717.

[44]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[45]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[46]  F. Leupold,et al.  Quantum control of the motional states of trapped ions through fast switching of trapping potentials , 2012, 1208.3986.

[47]  Vogel,et al.  Quantum nondemolition measurement of the motional energy of a trapped atom. , 1996, Physical review letters.

[48]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[49]  Michael Garwood,et al.  Improved Performance of Frequency-Swept Pulses Using Offset-Independent Adiabaticity , 1996 .

[50]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[51]  K. Sengupta,et al.  Ramp dynamics of phonons in an ion trap: entanglement generation and cooling. , 2013, Physical review letters.

[52]  A. Steane,et al.  A long-lived memory qubit on a low-decoherence quantum bus , 2007, 0710.4421.

[53]  J. D. Wong-Campos,et al.  Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry. , 2015, Physical review letters.

[54]  Andrew G. Glen,et al.  APPL , 2001 .

[55]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[56]  Bell,et al.  Coaxial-resonator-driven rf (Paul) trap for strong confinement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[57]  C. Dion,et al.  Wave packet dynamics of an atomic ion in a Paul trap , 2013, 1312.2419.

[58]  Barry C. Sanders,et al.  Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting , 2002 .

[59]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[60]  H. Moya-Cessa,et al.  Ion–laser interactions: The most complete solution , 2012, 1210.8127.

[61]  Observation of phonon hopping in radial vibrational modes of trapped ions , 2012 .

[62]  A. Royer Wigner function as the expectation value of a parity operator , 1977 .

[63]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[64]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[65]  H. Häffner,et al.  How to realize a universal quantum gate with trapped ions , 2003, quant-ph/0312162.

[66]  Mesoscopic superpositions of vibronic collective states of N trapped ions. , 2001, Physical review letters.

[67]  G. Jeschke,et al.  TIME-DOMAIN CHIRP ELECTRON NUCLEAR DOUBLE RESONANCE SPECTROSCOPY IN ONE AND TWO DIMENSIONS , 1995 .

[68]  P. Haljan,et al.  Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. , 2004, Physical review letters.

[69]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[70]  L. Davidovich,et al.  Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps , 1997 .

[71]  Seth Lloyd,et al.  ANALOG QUANTUM ERROR CORRECTION , 1998 .

[72]  V. Negnevitsky,et al.  Spin–motion entanglement and state diagnosis with squeezed oscillator wavepackets , 2014, Nature.

[73]  Christoph Becher,et al.  The coherence of qubits based on single Ca+ions , 2003 .

[74]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[75]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[76]  D. Suter,et al.  Broadband excitation by chirped pulses: application to single electron spins in diamond , 2013, 1301.2980.

[77]  H. Moya-Cessa,et al.  High NOON states in trapped ions , 2012, 1304.6702.

[78]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[79]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[80]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.