The Mg2NiH4 film on nickel substrate: synthesis, properties and kinetics of formation.
暂无分享,去创建一个
A. Baraban | V. Kuznetsov | A. Voyt | V. A. Dmitriev | D. Elets | I. Chernov | I. Gabis
[1] A. Baraban,et al. Synthesis and properties of hydrogenated aluminum thin film by reactive sputtering , 2020 .
[2] R. Ahuja,et al. Atomistic Modeling of Various Doped Mg2NiH4 as Conversion Electrode Materials for Lithium Storage , 2019, Crystals.
[3] R. Ahuja,et al. Exploring pristine and Li-doped Mg2NiH4 compounds with potential lithium-storage properties: Ab initio insight , 2018 .
[4] L. Pasquini,et al. Dehydrogenation-hydrogenation characteristics of nanocrystalline Mg2Ni powders compacted by high-pressure torsion , 2017 .
[5] I. E. Gabis,et al. Luminescent properties of aluminum hydride , 2015 .
[6] J. Bonnet,et al. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries , 2015, Beilstein journal of nanotechnology.
[7] A. Baraban,et al. A mechanism of ultraviolet activation of the α-AlH3 decomposition , 2014 .
[8] Y. Petrov,et al. Diagnostics of γ-irradiated Si-SiO2 structures by the cathodoluminescence method , 2013 .
[9] Yiping Zhao,et al. Semiconducting ground-state of three polymorphs of Mg2NiH4 from first-principles calculations , 2013 .
[10] J. Jumas,et al. Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .
[11] M. Polański,et al. Mg2NiH4 synthesis and decomposition reactions , 2013 .
[12] A. Baraban,et al. Ultraviolet activation of thermal decomposition of α-alane , 2012 .
[13] P. Reale,et al. Magnesium hydride as a high capacity negative electrode for lithium ion batteries , 2012 .
[14] F. Deorsola,et al. Development of nanostructured Mg2Ni alloys for hydrogen storage applications , 2011 .
[15] John S. O. Evans,et al. Advanced Input Files & Parametric Quantitative Analysis Using Topas , 2010 .
[16] R. Gremaud,et al. Structural and optical properties of MgyNi1-yHx gradient thin films in relation to the as-deposited metallic state , 2009 .
[17] J. Tarascon,et al. Metal hydrides for lithium-ion batteries. , 2008, Nature materials.
[18] A. Ulyashin,et al. Similarity of electronic structure and optical properties of Mg2 NiH4 and Si , 2008 .
[19] A. Juan,et al. A theoretical study of the electronic structure and bonding of the monoclinic phase of Mg2NiH4 , 2007 .
[20] E. A. Evard,et al. Study of the kinetics of hydrogen sorption and desorption from titanium , 2005 .
[21] D. Noréus,et al. Bonding and stability of the hydrogen storage material Mg(2)NiH(4). , 2002, Inorganic chemistry.
[22] T. Richardson,et al. Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4 , 2002 .
[23] T. Sakai,et al. High pressure experiments on the Mg2Ni and Mg2NiH4–H systems , 2002 .
[24] L. Schlapbach,et al. Density of occupied states of intermetallic hydride NiMg2H4 , 1984 .
[25] A. A. Studna,et al. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .
[26] J. Reilly,et al. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 , 1968 .