The Mg2NiH4 film on nickel substrate: synthesis, properties and kinetics of formation.

[1]  A. Baraban,et al.  Synthesis and properties of hydrogenated aluminum thin film by reactive sputtering , 2020 .

[2]  R. Ahuja,et al.  Atomistic Modeling of Various Doped Mg2NiH4 as Conversion Electrode Materials for Lithium Storage , 2019, Crystals.

[3]  R. Ahuja,et al.  Exploring pristine and Li-doped Mg2NiH4 compounds with potential lithium-storage properties: Ab initio insight , 2018 .

[4]  L. Pasquini,et al.  Dehydrogenation-hydrogenation characteristics of nanocrystalline Mg2Ni powders compacted by high-pressure torsion , 2017 .

[5]  I. E. Gabis,et al.  Luminescent properties of aluminum hydride , 2015 .

[6]  J. Bonnet,et al.  Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries , 2015, Beilstein journal of nanotechnology.

[7]  A. Baraban,et al.  A mechanism of ultraviolet activation of the α-AlH3 decomposition , 2014 .

[8]  Y. Petrov,et al.  Diagnostics of γ-irradiated Si-SiO2 structures by the cathodoluminescence method , 2013 .

[9]  Yiping Zhao,et al.  Semiconducting ground-state of three polymorphs of Mg2NiH4 from first-principles calculations , 2013 .

[10]  J. Jumas,et al.  Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .

[11]  M. Polański,et al.  Mg2NiH4 synthesis and decomposition reactions , 2013 .

[12]  A. Baraban,et al.  Ultraviolet activation of thermal decomposition of α-alane , 2012 .

[13]  P. Reale,et al.  Magnesium hydride as a high capacity negative electrode for lithium ion batteries , 2012 .

[14]  F. Deorsola,et al.  Development of nanostructured Mg2Ni alloys for hydrogen storage applications , 2011 .

[15]  John S. O. Evans,et al.  Advanced Input Files & Parametric Quantitative Analysis Using Topas , 2010 .

[16]  R. Gremaud,et al.  Structural and optical properties of MgyNi1-yHx gradient thin films in relation to the as-deposited metallic state , 2009 .

[17]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[18]  A. Ulyashin,et al.  Similarity of electronic structure and optical properties of Mg2 NiH4 and Si , 2008 .

[19]  A. Juan,et al.  A theoretical study of the electronic structure and bonding of the monoclinic phase of Mg2NiH4 , 2007 .

[20]  E. A. Evard,et al.  Study of the kinetics of hydrogen sorption and desorption from titanium , 2005 .

[21]  D. Noréus,et al.  Bonding and stability of the hydrogen storage material Mg(2)NiH(4). , 2002, Inorganic chemistry.

[22]  T. Richardson,et al.  Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4 , 2002 .

[23]  T. Sakai,et al.  High pressure experiments on the Mg2Ni and Mg2NiH4–H systems , 2002 .

[24]  L. Schlapbach,et al.  Density of occupied states of intermetallic hydride NiMg2H4 , 1984 .

[25]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[26]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 , 1968 .