The mechanical behaviour of spherical egg-box sandwich structures

[1]  Z. Guan,et al.  The compressive properties of sandwich structures based on an egg-box core design , 2018, Composites Part B: Engineering.

[2]  Z. Guan,et al.  Energy absorbing characteristics of the composite contoured-core sandwich panels , 2016 .

[3]  G. Nurick,et al.  The energy-absorbing characteristics of composite tube-reinforced foam structures , 2014 .

[4]  S. Tsopanos,et al.  The quasi-static and blast response of steel lattice structures , 2011 .

[5]  J. X. Zhang,et al.  Low velocity impact response of lightweight metal sandwich panel with corrugated core , 2011 .

[6]  G. Nurick,et al.  Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading , 2010 .

[7]  G. Nurick,et al.  The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading , 2010 .

[8]  H. Wadley,et al.  Quasistatic deformation and failure modes of composite square honeycombs , 2008 .

[9]  Vikram Deshpande,et al.  Dynamic crushing of sandwich panels with prismatic lattice cores , 2007 .

[10]  Tomohiro Yokozeki,et al.  Mechanical properties of corrugated composites for candidate materials of flexible wing structures , 2006 .

[11]  A. G. Evans,et al.  Structural performance of metallic sandwich panels with square honeycomb cores , 2005 .

[12]  Norman A. Fleck,et al.  The plastic collapse and energy absorption capacity of egg-box panels , 2003 .

[13]  Wesley J. Cantwell,et al.  The low velocity impact response of foam-based sandwich structures , 2002 .

[14]  M. Akay,et al.  A comparison of honeycomb-core and foam-core carbon-fibre/epoxy sandwich panels , 1990 .

[15]  Matthew David Theobald,et al.  Blast loading of sandwich panels with thin-walled tube cores , 2007 .