Dimension reduction of a crack evolution problem in a linearly elastic plate

A two-dimensional model which describes the evolution of a crack in a plate is deduced from a three-dimensional lin- early elastic Griffith's type model. The result is achieved by adopting the framework of energetic solutions for rate-independent processes, to model three-dimensional fracture evolution, in conjunction with a variational dimension reduction procedure.

[1]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[2]  Ana Cristina Barroso,et al.  Relaxation of bulk and interfacial energies , 1996 .

[3]  G. Buttazzo,et al.  A variational definition of the strain energy for an elastic string , 1991 .

[4]  Matteo Negri,et al.  QUASI-STATIC CRACK PROPAGATION BY GRIFFITH'S CRITERION , 2008 .

[5]  Andrea Braides Γ-convergence for beginners , 2002 .

[6]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[7]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .

[8]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[9]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[10]  Gilles A. Francfort,et al.  Existence results for a class of rate-independent material models with nonconvex elastic energies , 2006 .

[11]  Quasistatic evolution of a brittle thin film , 2006, math/0604557.

[12]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[13]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[14]  Filippo Cagnetti,et al.  A VANISHING VISCOSITY APPROACH TO FRACTURE GROWTH IN A COHESIVE ZONE MODEL WITH PRESCRIBED CRACK PATH , 2008 .

[15]  L. Scardia,et al.  Quasistatic delamination problem , 2009 .

[16]  Ulisse Stefanelli,et al.  Γ-limits and relaxations for rate-independent evolutionary problems , 2008 .

[17]  Alexander Mielke,et al.  Existence results for energetic models for rate-independent systems , 2005 .

[18]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .