Singular Continuation: Generating Piecewise Linear Approximations to Pareto Sets via Global Analysis

We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale [Global analysis and economics. I. Pareto optimum and a generalization of Morse theory, in Dynamical Systems, Academic Press, New York, 1973, pp. 531–544]. The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set, and stable Pareto critical set, and it can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable setwise sense is proven and tested in a number of numerical examples.

[1]  Achille Messac,et al.  A computationally efficient metamodeling approach for expensive multiobjective optimization , 2008 .

[2]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[3]  I. R. Porteous,et al.  SIMPLE SINGULARITIES OF MAPS , 1971 .

[4]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[5]  Layne T. Watson,et al.  Multi-Objective Control-Structure Optimization via Homotopy Methods , 1993, SIAM J. Optim..

[6]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[7]  R. T. Haftka,et al.  Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .

[8]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[9]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[10]  Eugene L. Allgower,et al.  Estimates for piecewise linear approximations of implicitly defined manifolds , 1989 .

[11]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[12]  Vilfredo Pareto,et al.  Manuale di economia politica : con una introduzione alla scienza sociale , 1906 .

[13]  Hirotaka Nakayama,et al.  Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.

[14]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[15]  H. P. Benson,et al.  Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .

[16]  Zelda B. Zabinsky,et al.  Comparative Assessment of Algorithms and Software for Global Optimization , 2005, J. Glob. Optim..

[17]  Yieh-Hei Wan On the structure and stability of local Pareto optima in a pure exchange economy , 1978 .

[18]  J. R J Rao,et al.  Nonlinear programming continuation strategy for one parameter design optimization problems , 1989 .

[19]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[20]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[21]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[22]  Stefan Gnutzmann,et al.  Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..

[23]  Enrico Miglierina,et al.  Critical Points Index for Vector Functions and Vector Optimization , 2008 .

[24]  Andrew J. Sommese,et al.  Piecewise Linear Approximation of Smooth Compact Fibers , 2002, J. Complex..

[25]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[26]  Yaroslav D. Sergeyev,et al.  An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..

[27]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[28]  E. E. Myshetskaya,et al.  Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..

[29]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[30]  Walter P. Murphy,et al.  Structural stability , 1999 .

[31]  Víctor Pereyra,et al.  Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems , 2009, Math. Comput. Simul..

[32]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[33]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[34]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[35]  Yieh-Hei Wan On local Pareto optima , 1975 .

[36]  J. Mather Stability of C ∞ mappings: VI the nice dimensions , 1971 .

[37]  S. Smale Global analysis and economics , 1975, Synthese.

[38]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[39]  G. Debreu,et al.  Regular Differentiable Economies , 1976 .

[40]  V. Arnold SINGULARITIES OF SMOOTH MAPPINGS , 1968 .

[41]  R. Thom Les singularites des applications differentiables , 1956 .

[42]  R. Thom Stabilité structurelle et morphogénèse : essai d'une théorie générale des modèles , 1977 .

[43]  Harold Levine,et al.  Singularities of differentiable mappings , 1971 .

[44]  E. Allgower,et al.  Piecewise linear methods for nonlinear equations and optimization , 2000 .

[45]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..

[46]  DAVID MUMFORD,et al.  Global Analysis , 2003 .

[47]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[48]  W. de Melo,et al.  On the structure of the pareto set of generic mappings , 1976 .

[49]  Y. Wan,et al.  Morse theory for two functions , 1975 .

[50]  G. Debreu,et al.  Stephen Smale and the Economic Theory of General Equilibrium , 1993 .

[51]  János D. Pintér,et al.  Global Optimization in Practice:State of the Art and Perspectives , 2009 .

[52]  E. Allgower,et al.  An Algorithm for Piecewise-Linear Approximation of an Implicitly Defined Manifold , 1985 .

[53]  Enrico Miglierina,et al.  Convergence of Minimal Sets in Convex Vector Optimization , 2005, SIAM J. Optim..

[54]  Linet Özdamar,et al.  TRIOPT: a triangulation-based partitioning algorithm for global optimization , 2005 .

[55]  W. De Melo,et al.  Stability and optimization of several functions , 1976 .

[56]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[57]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[58]  Oliver Schütze,et al.  On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems , 2005, Practical Approaches to Multi-Objective Optimization.

[59]  T. Q. Phong,et al.  Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems , 2005, SIAM J. Optim..

[60]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[61]  Ian Stewart,et al.  Elementary catastrophe theory , 1983 .

[62]  Dinh The Luc,et al.  Generating the weakly efficient set of nonconvex multiobjective problems , 2008, J. Glob. Optim..

[63]  János D. Pintér,et al.  Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..

[64]  Yaroslav D. Sergeyev,et al.  A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..

[65]  Harold Levine,et al.  Stable maps: An introduction with low dimensional examples , 1976 .

[66]  Vilfredo Pareto,et al.  Cours d'économie politique : professé à l'Université de Lausanne , 1896 .

[67]  P. Fantini,et al.  A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization , 2005 .

[68]  William J. Welch,et al.  Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization , 2006 .

[69]  Donald R. Jones,et al.  Global optimization of deceptive functions with sparse sampling , 2008 .

[70]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[71]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..