Singular Continuation: Generating Piecewise Linear Approximations to Pareto Sets via Global Analysis
暂无分享,去创建一个
[1] Achille Messac,et al. A computationally efficient metamodeling approach for expensive multiobjective optimization , 2008 .
[2] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[3] I. R. Porteous,et al. SIMPLE SINGULARITIES OF MAPS , 1971 .
[4] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[5] Layne T. Watson,et al. Multi-Objective Control-Structure Optimization via Homotopy Methods , 1993, SIAM J. Optim..
[6] S. Ruzika,et al. Approximation Methods in Multiobjective Programming , 2005 .
[7] R. T. Haftka,et al. Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .
[8] Yaroslav D. Sergeyev,et al. Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..
[9] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[10] Eugene L. Allgower,et al. Estimates for piecewise linear approximations of implicitly defined manifolds , 1989 .
[11] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[12] Vilfredo Pareto,et al. Manuale di economia politica : con una introduzione alla scienza sociale , 1906 .
[13] Hirotaka Nakayama,et al. Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.
[14] A. Messac,et al. Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .
[15] H. P. Benson,et al. Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .
[16] Zelda B. Zabinsky,et al. Comparative Assessment of Algorithms and Software for Global Optimization , 2005, J. Glob. Optim..
[17] Yieh-Hei Wan. On the structure and stability of local Pareto optima in a pure exchange economy , 1978 .
[18] J. R J Rao,et al. Nonlinear programming continuation strategy for one parameter design optimization problems , 1989 .
[19] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[20] Jesse Freeman,et al. in Morse theory, , 1999 .
[21] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[22] Stefan Gnutzmann,et al. Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..
[23] Enrico Miglierina,et al. Critical Points Index for Vector Functions and Vector Optimization , 2008 .
[24] Andrew J. Sommese,et al. Piecewise Linear Approximation of Smooth Compact Fibers , 2002, J. Complex..
[25] A. Messac,et al. The normalized normal constraint method for generating the Pareto frontier , 2003 .
[26] Yaroslav D. Sergeyev,et al. An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..
[27] Kalyanmoy Deb,et al. Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.
[28] E. E. Myshetskaya,et al. Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..
[29] C. F. Jeff Wu,et al. Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .
[30] Walter P. Murphy,et al. Structural stability , 1999 .
[31] Víctor Pereyra,et al. Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems , 2009, Math. Comput. Simul..
[32] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[33] Jörg Fliege,et al. Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..
[34] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[35] Yieh-Hei Wan. On local Pareto optima , 1975 .
[36] J. Mather. Stability of C ∞ mappings: VI the nice dimensions , 1971 .
[37] S. Smale. Global analysis and economics , 1975, Synthese.
[38] E. Allgower,et al. Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .
[39] G. Debreu,et al. Regular Differentiable Economies , 1976 .
[40] V. Arnold. SINGULARITIES OF SMOOTH MAPPINGS , 1968 .
[41] R. Thom. Les singularites des applications differentiables , 1956 .
[42] R. Thom. Stabilité structurelle et morphogénèse : essai d'une théorie générale des modèles , 1977 .
[43] Harold Levine,et al. Singularities of differentiable mappings , 1971 .
[44] E. Allgower,et al. Piecewise linear methods for nonlinear equations and optimization , 2000 .
[45] Sergei S. Kucherenko,et al. Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..
[46] DAVID MUMFORD,et al. Global Analysis , 2003 .
[47] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[48] W. de Melo,et al. On the structure of the pareto set of generic mappings , 1976 .
[49] Y. Wan,et al. Morse theory for two functions , 1975 .
[50] G. Debreu,et al. Stephen Smale and the Economic Theory of General Equilibrium , 1993 .
[51] János D. Pintér,et al. Global Optimization in Practice:State of the Art and Perspectives , 2009 .
[52] E. Allgower,et al. An Algorithm for Piecewise-Linear Approximation of an Implicitly Defined Manifold , 1985 .
[53] Enrico Miglierina,et al. Convergence of Minimal Sets in Convex Vector Optimization , 2005, SIAM J. Optim..
[54] Linet Özdamar,et al. TRIOPT: a triangulation-based partitioning algorithm for global optimization , 2005 .
[55] W. De Melo,et al. Stability and optimization of several functions , 1976 .
[56] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[57] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[58] Oliver Schütze,et al. On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems , 2005, Practical Approaches to Multi-Objective Optimization.
[59] T. Q. Phong,et al. Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems , 2005, SIAM J. Optim..
[60] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[61] Ian Stewart,et al. Elementary catastrophe theory , 1983 .
[62] Dinh The Luc,et al. Generating the weakly efficient set of nonconvex multiobjective problems , 2008, J. Glob. Optim..
[63] János D. Pintér,et al. Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..
[64] Yaroslav D. Sergeyev,et al. A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..
[65] Harold Levine,et al. Stable maps: An introduction with low dimensional examples , 1976 .
[66] Vilfredo Pareto,et al. Cours d'économie politique : professé à l'Université de Lausanne , 1896 .
[67] P. Fantini,et al. A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization , 2005 .
[68] William J. Welch,et al. Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization , 2006 .
[69] Donald R. Jones,et al. Global optimization of deceptive functions with sparse sampling , 2008 .
[70] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[71] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..