Seasonal precipitation reconstruction and teleconnections with ENSO based on tree ring analysis of Pinus cooperi

Tendencies of climatic variability indicate that northern Mexico will soon suffer from severe drought. Modeling the influence of climate and ecological processes would help researchers better understand the future implication of climatic variations. Here, we reconstructed historical seasonal precipitation using dendrochronological indices of Pinus cooperi and El Niño southern oscillation (ENSO). Correlation analysis was conducted to establish the precipitation response period; then a reconstruction model using independent variables was constructed using regression procedures. Available data were calibrated and verified to strengthen and validate the modeled reconstruction. Precipitation from the previous winter was best correlated with tree growth. Regression procedures showed that the residual chronology associated in a linear model with El Niño 3.4 explained 47 % of seasonal precipitation variability. This study contributes to a better understanding of historical variations in precipitation and the influence of ENSO in common tree species of northern Mexico to help land managers improve local forest management in a climate change scenario.

[1]  Julián Cerano-Paredes,et al.  Potencial dendroclimático de Pinus pinceana Gordon en la Sierra Madre Oriental , 2016 .

[2]  B. Konôpka,et al.  Carbon allocation in forest ecosystem - case studies from young pine stands , 2009 .

[3]  A. J. Troup,et al.  The ‘southern oscillation’ , 1965 .

[4]  M. Therrell,et al.  Warm season tree growth and precipitation over Mexico , 2002 .

[5]  Harold C. Fritts,et al.  Tree Rings and Climate. , 1978 .

[6]  David M. Meko,et al.  Precipitation reconstruction for Northwestern Tunisia from tree rings , 2008 .

[7]  M. Therrell,et al.  Tree-Ring Reconstructed Winter Precipitation and Tropical Teleconnections in Durango, Mexico , 2003 .

[8]  A. Hamann,et al.  Geographic variation in growth response of Douglas‐fir to interannual climate variability and projected climate change , 2010 .

[9]  R. Beighley,et al.  Inter-annual temperature and precipitation variations over the Litani Basin in response to atmospheric circulation patterns , 2012, Theoretical and Applied Climatology.

[10]  José Villanueva Díaz,et al.  Reconstructed precipitation for the Upper Nazas River Basin, Durango , 2012 .

[11]  B. Luckman,et al.  Winter-spring precipitation reconstructions from tree rings for northeast Mexico , 2007 .

[12]  R. Heim,et al.  Pacific and Atlantic influences on Mesoamerican climate over the past millennium , 2012, Climate Dynamics.

[13]  M. Therrell,et al.  Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647-1992 , 2002 .

[14]  J. Pierrat,et al.  Effect of sampling effort on the regional chronology statistics and climate-growth relationships estimation , 2013 .

[15]  R. D. Valdez-Cepeda,et al.  El Niño Oscilación del Sur y sus efectos en la precipitación en la parte alta de la cuenca del río Nazas , 2011 .

[16]  M. Stokes,et al.  An Introduction to Tree-Ring Dating , 1996 .

[17]  J. Valdez-Lazalde,et al.  SISTEMA COMPATIBLE DE AHUSAMIENTO-VOLUMEN PARA Pinus cooperi Blanco EN DURANGO, MÉXICO , 2008 .

[18]  I. S. Cohen,et al.  RECONSTRUCCIÓN DE LA PRECIPITACIÓN ESTACIONAL PARA EL BARLOVENTO DE LA SIERRA MADRE OCCIDENTAL CON ANILLOS DE CRECIMIENTO DE Pseudotsuga menziesii (Mirb.) Franco , 2009 .

[19]  Jesús Celis Porras,et al.  Growth Evaluation of a Conifer Forest (Pinus Cooperí Blanco) using a Neural Net Backpropagation Trained with Distance Independent Competition Measures , 2007, Computación y Sistemas.

[20]  M. Dobbertin,et al.  Climate change may already threaten Scots pine stands in the Swiss Alps , 2004 .

[21]  I. S. Cohen,et al.  Reconstrucción de 350 años de precipitación para el suroeste de Chihuahua, México , 2016 .

[22]  Ricardo C. Nogueira,et al.  Variability of rainfall from tropical cyclones in the eastern USA and its association to the AMO and ENSO , 2013, Theoretical and Applied Climatology.

[23]  Mauro E. González,et al.  Climatic influences on fire in Araucaria araucana–Nothofagus forests in the Andean cordillera of south-central Chile , 2006 .

[24]  M. Beniston Climate modeling at various spatial and temporal scales: where can dendrochronology help? , 2002 .

[25]  Franco Biondi,et al.  DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies , 2004, Comput. Geosci..

[26]  Shu-long Yu,et al.  A tree-ring based precipitation reconstruction for the Baluntai region on the southern slope of the central Tien Shan Mountains, China, since A.D. 1464 , 2013 .

[27]  T. Kolb,et al.  Growth Sensitivity to Drought of Co-Occurring Pinus spp. along an Elevation Gradient in Northern Mexico , 2011 .

[28]  Socorro González-Elizondo,et al.  Diversidad, estructura y productividad de bosques templados de Durango, México , 2009 .

[29]  R. Seager,et al.  Mexican drought: an observational modeling and tree ring study of variability and climate change , 2009 .

[30]  M. Therrell,et al.  Hydroclimatic variability of the upper Nazas basin: Water management implications for the irrigated area of the Comarca Lagunera, Mexico , 2005 .

[31]  R. Holmes Computer-Assisted Quality Control in Tree-Ring Dating and Measurement , 1983 .