Independent component analysis: algorithms and applications

[1]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[2]  Simon Haykin,et al.  Image Denoising by Sparse Code Shrinkage , 2001 .

[3]  Tapani Ristaniemi,et al.  Delay Estimation in CDMA Communications Using A FastICA Algorithm , 2000 .

[4]  Aapo Hyvärinen,et al.  Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.

[5]  Aapo Hyvärinen,et al.  Gaussian moments for noisy independent component analysis , 1999, IEEE Signal Processing Letters.

[6]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[7]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[8]  A Hyvarinen,et al.  SURVEY OF INDEPENDENT COMPONENT ANALYSIS , 1999 .

[9]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[10]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[11]  Aapo Hyvärinen,et al.  Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood , 1998, Neurocomputing.

[12]  Erkki Oja,et al.  An Experimental Comparison of Neural ICA Algorithms , 1998 .

[13]  Erkki Oja,et al.  Independent Component Analysis in Wave Decomposition of Auditory Evoked Fields , 1998 .

[14]  Erkki Oja,et al.  Independent component analysis by general nonlinear Hebbian-like learning rules , 1998, Signal Process..

[15]  Erkki Oja,et al.  Independent Component Analysis for Parallel Financial Time Series , 1998, International Conference on Neural Information Processing.

[16]  Erkki Oja,et al.  Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings , 1997, NIPS.

[17]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[18]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[19]  Andrew D. Back,et al.  A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..

[20]  R N Vigário,et al.  Extraction of ocular artefacts from EEG using independent component analysis. , 1997, Electroencephalography and clinical neurophysiology.

[21]  Erkki Oja,et al.  A class of neural networks for independent component analysis , 1997, IEEE Trans. Neural Networks.

[22]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[23]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[24]  Barak A. Pearlmutter,et al.  Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA , 1996, NIPS.

[25]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[26]  Andrzej Cichocki,et al.  Robust neural networks with on-line learning for blind identification and blind separation of sources , 1996 .

[27]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[28]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[29]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[30]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[31]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[32]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[33]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[34]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[35]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[36]  J. Nadal,et al.  Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer Network 5 , 1994 .

[37]  J. Nadal Non linear neurons in the low noise limit : a factorial code maximizes information transferJean , 1994 .

[38]  Dinh Tuan Pham,et al.  Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .

[39]  Esfandiar Sorouchyari,et al.  Blind separation of sources, part III: Stability analysis , 1991, Signal Process..

[40]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[41]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[42]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[44]  Paul Wintz,et al.  Instructor's manual for digital image processing , 1987 .

[45]  Sidney C. Port,et al.  Probability, Random Variables, and Stochastic Processes—Second Edition (Athanasios Papoulis) , 1986 .

[46]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[47]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[48]  D. Luenberger Optimization by Vector Space Methods , 1968 .