Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides

Calibration studies of actinide and lanthanide trifluorides are reported for actinide and lanthanide scalar-relativistic energy-consistent f-in-core pseudopotentials, respectively, accompanying valence basis sets as well as core-polarization potentials. Results from Hartree–Fock and coupled-cluster singles, doubles, and perturbative triples f-in-core pseudopotential calculations are compared to corresponding data from f-in-valence pseudopotential and all-electron calculations as well as to experimental data. In general, good agreement is observed between the f-in-core and f-in-valence pseudopotential results, whereas due to the lack of experimental data for the actinides only a good agreement of the calculated and experimentally determined bond lengths of the lanthanide systems can be established. Nevertheless, the results indicate that the core-polarization potentials devised here for actinides improve the f-in-core results.

[1]  Yixuan Wang,et al.  Pseudopotential study of the ground and excited states of Yb2 , 1998 .

[2]  B. Roos,et al.  A theoretical study of the bonding in trivalent americium complexes , 2004 .

[3]  J. Simons,et al.  The Hartree-Fock Method for Atoms , 1979 .

[4]  M. Dolg,et al.  Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations , 2005 .

[5]  J. Katz,et al.  The chemistry of the actinide elements, Volume II , 1986 .

[6]  M. Dolg,et al.  Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems , 2006 .

[7]  P. Millié,et al.  Nonperturbative method for core–valence correlation in pseudopotential calculations: Application to the Rb2 and Cs2 molecules , 1992 .

[8]  M. Dolg,et al.  Quasirelativistic 5f-in-core pseudopotential study of the actinocenes An(C8H8)2, An = Th–Pu , 2007 .

[9]  Michael Dolg,et al.  A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds , 1993 .

[10]  G. Lanza,et al.  On the effect of 4f electrons on the structural characteristics of lanthanide trihalides: computational and electron diffraction study of dysprosium trichloride. , 2008, The Journal of chemical physics.

[11]  Michael Dolg,et al.  Energy-adjusted pseudopotentials for the rare earth elements , 1989 .

[12]  M. Hargittai The molecular geometry of gas-phase metal halides , 1988 .

[13]  W. Meyer,et al.  Ground‐state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials , 1984 .

[14]  A. Ivanov,et al.  An electron diffraction study of the molecular structures of PrI3, NdI3, GdI3 and LuI3 , 1978 .

[15]  M. Dolg,et al.  THE RELATIVISTIC ENERGY-CONSISTENT AB INITIO PSEUDOPOTENTIAL APPROACH AND ITS APPLICATION TO LANTHANIDE AND ACTINIDE COMPOUNDS , 2004 .

[16]  Y. Mochizuki,et al.  On the electronic structure of CmFn (n=1–4) by all-electron Dirac–Hartree–Fock calculations , 2003 .

[17]  P. Hay,et al.  Density functional investigations of the properties and thermochemistry of UFn and UCln (n=1,...,6). , 2004, The Journal of chemical physics.

[18]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the rare earth elements , 1989 .

[19]  Robert A. Evarestov,et al.  Electronic structure of crystalline uranium nitride: LCAO DFT calculations , 2008 .

[20]  W. Johnson,et al.  Electric and magnetic susceptibilities and shielding factors for closed-shell atoms and ions of high nuclear charge , 1982 .

[21]  M. Dolg,et al.  Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements , 2007 .

[22]  O. Eisenstein,et al.  Some structural and electronic properties of MX3 (M = Ln, Sc, Y, Ti+, Zr+, Hf+; X = H, Me, Hal, NH2) from DFT calculations. , 2003, Faraday discussions.

[23]  J. Wood,et al.  Improved Pauli Hamiltonian for local-potential problems , 1978 .

[24]  P. Scott,et al.  The f Elements , 1999 .

[25]  W. Meyer,et al.  Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms , 1984 .

[26]  C. Myers Covalent bonding in lanthanide trihalides , 1975 .

[27]  L. Maron,et al.  New insights into the polymerization of methyl methacrylate initiated by rare-earth borohydride complexes: a combined experimental and computational approach. , 2008, Chemistry.

[28]  Bruce E. Bursten,et al.  The Electronic Structure of Actinide-Containing Molecules: A Challenge to Applied Quantum Chemistry , 1991 .

[29]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[30]  Michael Dolg,et al.  Pseudopotential Study on Rare Earth Dihalides and Trihalides , 1991 .

[31]  Laurent Joubert,et al.  Structural and Thermochemical ab Initio Studies of Lanthanide Trihalide Molecules with Pseudopotentials , 1998 .

[32]  P. Kleinschmidt,et al.  Thermochemistry of the gaseous fluorides of samarium, europium, and thulium , 1981 .

[33]  Michael Dolg,et al.  Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide , 1994 .

[34]  Michael Dolg,et al.  Quasirelativistic energy-consistent 4f-in-core pseudopotentials for tetravalent lanthanide elements , 2009 .

[35]  M. Dolg,et al.  Density functional studies on lanthanide (III) texaphyrins (Ln-Tex2+, Ln = La, Gd, Lu): structure, stability and electronic excitation spectrum , 2003 .

[36]  M. Dolg,et al.  Quasirelativistic energy-consistent 5f-in-core pseudopotentials for trivalent actinide elements , 2007 .

[37]  Xuebo Chen,et al.  Density functional theory studies of actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure, stability, and comparison with lanthanide(III) motexafins. , 2006, Inorganic chemistry.

[38]  Glenn T. Seaborg,et al.  The chemistry of the actinide elements , 1952 .

[39]  Thomas R. Cundari,et al.  Effective core potential studies of lanthanide complexes , 1995 .

[40]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[41]  Richard L. Martin,et al.  Density functional calculations on actinide compounds: Survey of recent progress and application to [UO2X4]2− (X=F, Cl, OH) and AnF6 (An=U, Np, Pu) , 1999 .

[42]  M. Dolg,et al.  Segmented contraction scheme for small-core lanthanide pseudopotential basis sets , 2002 .

[43]  H. Stoll,et al.  Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials , 2001 .

[44]  Clifford E. Myers,et al.  A CASE FOR COVALENT BONDING IN LANTHANIDE TRIHALIDES , 1975 .

[45]  Pekka Pyykkö,et al.  Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: The contributions from relativity and 4f-shell hybridization , 2006 .

[46]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[47]  M. Dolg,et al.  Approaching actinide(+III) hydration from first principles. , 2007, Physical chemistry chemical physics : PCCP.