Mathematical Approaches to Infectious Disease Prediction and Control

Mathematics has long been an important tool for understanding and controlling the spread of infectious diseases. Here, we begin with an overview of compartmental models, the traditional approach to modeling infectious disease dynamics, and then introduce contact network epidemiology, a relatively new approach that applies bond percolation on random graphs to model the spread of infectious disease through het- erogeneous populations. As we illustrate, these methods can be used to address public health challenges and have recently been coupled with powerful computational meth- ods to optimize epidemic control strategies.

[1]  L. Meyers,et al.  Epidemic thresholds in dynamic contact networks , 2009, Journal of The Royal Society Interface.

[2]  M. Newman,et al.  Network theory and SARS: predicting outbreak diversity , 2004, Journal of Theoretical Biology.

[3]  Ả. Svensson A note on generation times in epidemic models. , 2007, Mathematical Biosciences.

[4]  L. Meyers,et al.  The Shifting Demographic Landscape of Influenza , 2009, PLoS currents.

[5]  Jon Kleinberg,et al.  The Structure of the Web , 2001, Science.

[6]  Irene A. Doherty,et al.  HIV and African Americans in the Southern United States: Sexual Networks and Social Context , 2006, Sexually transmitted diseases.

[7]  L Forsberg White,et al.  A likelihood‐based method for real‐time estimation of the serial interval and reproductive number of an epidemic , 2008, Statistics in medicine.

[8]  P. Grassberger On the critical behavior of the general epidemic process and dynamical percolation , 1983 .

[9]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[10]  E. Volz SIR dynamics in random networks with heterogeneous connectivity , 2007, Journal of mathematical biology.

[11]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[12]  J. Wallinga,et al.  Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures , 2004, American journal of epidemiology.

[13]  C. Fraser,et al.  Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions , 2003, Science.

[14]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Nathaniel Hupert,et al.  Optimizing Tactics for use of the U.S. Antiviral Strategic National Stockpile for Pandemic (H1N1) Influenza, 2009 , 2009, PLoS currents.

[16]  Rémi Munos,et al.  Bandit Algorithms for Tree Search , 2007, UAI.

[17]  Shie Mannor,et al.  PAC Bounds for Multi-armed Bandit and Markov Decision Processes , 2002, COLT.

[18]  L. Meyers Contact network epidemiology: Bond percolation applied to infectious disease prediction and control , 2006 .

[19]  Margaret L. Brandeau,et al.  OR's Next Top Model: Decision Models for Infectious Disease Control , 2009 .

[20]  W. Marsden I and J , 2012 .

[21]  M E J Newman,et al.  Predicting epidemics on directed contact networks. , 2006, Journal of theoretical biology.

[22]  D. Lanska The Mad Cow Problem in the UK: Risk Perceptions, Risk Management, and Health Policy Development , 1998, Journal of public health policy.

[23]  Sally Blower,et al.  An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it y , 2004 .

[24]  R. Mikolajczyk,et al.  Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases , 2008, PLoS medicine.

[25]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[26]  L. Meyers,et al.  Susceptible–infected–recovered epidemics in dynamic contact networks , 2007, Proceedings of the Royal Society B: Biological Sciences.

[27]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[28]  J. Robins,et al.  Transmission Dynamics and Control of Severe Acute Respiratory Syndrome , 2003, Science.

[29]  Craig Packer,et al.  Distinguishing epidemic waves from disease spillover in a wildlife population , 2009, Proceedings of the Royal Society B: Biological Sciences.

[30]  Shweta Bansal,et al.  Network frailty and the geometry of herd immunity , 2006, Proceedings of the Royal Society B: Biological Sciences.

[31]  John N. Tsitsiklis,et al.  The Sample Complexity of Exploration in the Multi-Armed Bandit Problem , 2004, J. Mach. Learn. Res..

[32]  Shweta Bansal,et al.  The Shifting Demographic Landscape of Pandemic Influenza , 2010, PloS one.

[33]  H. Poincaré,et al.  Percolation ? , 1982 .

[34]  Nathaniel Hupert,et al.  Optimizing Tactics for Use of the U.S. Antiviral Strategic National Stockpile for Pandemic Influenza , 2011, PloS one.

[35]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[36]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[37]  W. Edmunds,et al.  Dynamic social networks and the implications for the spread of infectious disease , 2008, Journal of The Royal Society Interface.

[38]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[39]  Mel Krajden,et al.  Modeling Control Strategies of Respiratory Pathogens , 2005, Emerging infectious diseases.

[40]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Becker,et al.  Estimation for an epidemic model. , 1976, Biometrics.

[42]  Gail E. Potter,et al.  The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus , 2009, Science.

[43]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[44]  C. Fraser,et al.  Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong , 2003, The Lancet.

[45]  Nathaniel Hupert,et al.  Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America , 2009, Influenza and other respiratory viruses.

[46]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[47]  R M May,et al.  The influence of concurrent partnerships on the dynamics of HIV/AIDS. , 1992, Mathematical biosciences.

[48]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[49]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[50]  S. Goll Design and implementation of the Disease Control System DiCon , 2009 .

[51]  E. Volz,et al.  SIR dynamics in structured populations with heterogeneous connectivity , 2005, physics/0508160.

[52]  L. Meyers,et al.  When individual behaviour matters: homogeneous and network models in epidemiology , 2007, Journal of The Royal Society Interface.

[53]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[54]  C. Macken,et al.  Mitigation strategies for pandemic influenza in the United States. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Nizam,et al.  Containing pandemic influenza with antiviral agents. , 2004, American journal of epidemiology.

[56]  Shweta Bansal,et al.  A Comparative Analysis of Influenza Vaccination Programs , 2006, PLoS medicine.

[57]  J. Lepkowski,et al.  American Adolescents: Sexual Mixing Patterns, Bridge Partners, and Concurrency , 2002, Sexually transmitted diseases.

[58]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[59]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[60]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[61]  M. Newman,et al.  Applying Network Theory to Epidemics: Control Measures for Mycoplasma pneumoniae Outbreaks , 2003, Emerging infectious diseases.

[62]  J. Desenclos,et al.  A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[63]  Hpa Northern Ireland Swine influenza investigation teams Epidemiology of new influenza A (H1N1) virus infection, United Kingdom, April-June 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[64]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .