On treewidth approximations
暂无分享,去创建一个
[1] Dieter Kratsch,et al. Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1999, J. Algorithms.
[2] Joseph Naor,et al. Fast approximate graph partitioning algorithms , 1997, SODA '97.
[3] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..
[4] A. Berry. Désarticulation d'un graphe , 1998 .
[5] Frank Thomson Leighton,et al. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.
[6] Dieter Kratsch,et al. On the Structure of Graphs with Bounded Asteroidal Number , 1999, Graphs Comb..
[7] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.
[8] Ioan Todinca,et al. Listing all potential maximal cliques of a graph , 2000, Theor. Comput. Sci..
[9] Harold N. Gabow,et al. Using expander graphs to find vertex connectivity , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[10] Dieter Kratsch,et al. A Generalization of AT-Free Graphs and a Generic Algorithm for Solving Triangulation Problems , 2001, Algorithmica.
[11] Ioan Todinca,et al. Approximating the Treewidth of AT-Free Graphs , 2000, WG.
[12] Ravindra K. Ahuja,et al. Network Flows: Theory, Algorithms, and Applications , 1993 .
[13] Eyal Amir,et al. Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.
[14] Robert E. Tarjan,et al. Decomposition by clique separators , 1985, Discret. Math..
[15] Andreas Parra,et al. Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..
[16] Ioan Todinca,et al. Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..