On treewidth approximations

We introduce a natural heuristic for approximating the treewidth of graphs. We prove that this heuristic gives a constant factor approximation for the treewidth of graphs with bounded asteroidal number. Using a different technique, we give a O(log k) approximation algorithm for the treewidth of arbitrary graphs, where k is the treewidth of the input graph.

[1]  Dieter Kratsch,et al.  Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1999, J. Algorithms.

[2]  Joseph Naor,et al.  Fast approximate graph partitioning algorithms , 1997, SODA '97.

[3]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[4]  A. Berry Désarticulation d'un graphe , 1998 .

[5]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[6]  Dieter Kratsch,et al.  On the Structure of Graphs with Bounded Asteroidal Number , 1999, Graphs Comb..

[7]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[8]  Ioan Todinca,et al.  Listing all potential maximal cliques of a graph , 2000, Theor. Comput. Sci..

[9]  Harold N. Gabow,et al.  Using expander graphs to find vertex connectivity , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  Dieter Kratsch,et al.  A Generalization of AT-Free Graphs and a Generic Algorithm for Solving Triangulation Problems , 2001, Algorithmica.

[11]  Ioan Todinca,et al.  Approximating the Treewidth of AT-Free Graphs , 2000, WG.

[12]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[13]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[14]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[15]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[16]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..