Inkjet-printed patch antenna emitter for wireless communication application

ABSTRACT This research focuses on exploring low-cost and rapid production solutions for fabricating emitters for patch antennas for wireless communication applications. Additive manufacturing technique is employed to fabricate two patch antennas using silver nanoparticle ink on FR4 substrate. Finite-element simulation software, HFSS is used to analyse and predict the theoretical performance of the antenna designs for 2.4 GHz MIMO and 6 GHz wireless data transmission. The fabricated antennas have resonant frequencies closely matching the design values. The work provides a viable solution for fabricating emitters and finally antennas commercially using inkjet printing platform, thus overall reducing the cost and simplifying the process.

[1]  S. Agarwala,et al.  Probing the morphology-device relation of Fe₂O₃ nanostructures towards photovoltaic and sensing applications. , 2012, Nanoscale.

[2]  Wenjing Su,et al.  A novel inkjet-printed microfluidic tunable coplanar patch antenna , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[3]  Dimitris Anagnostou,et al.  Adaptive flexible antenna array system for deformable wing surfaces , 2015, 2015 IEEE Aerospace Conference.

[4]  Hiroyuki Fujita,et al.  Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas , 2006 .

[5]  M. Kivikoski,et al.  Flexible fabric-base patch antenna with protective coating , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[6]  Kin-Fai Tong,et al.  Low cost 3D-printed monopole fluid antenna , 2015, 2015 International Symposium on Antennas and Propagation (ISAP).

[7]  M. Maddela,et al.  A MEMS-based tunable coplanar patch antenna fabricated using PCB processing techniques , 2007 .

[8]  Wai Yee Yeong,et al.  Smart hydrogels for 3D bioprinting , 2015 .

[9]  Jian Dong Lu,et al.  The Research on Gravure Printing RFID Antenna , 2014 .

[10]  Wai Yee Yeong,et al.  Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs , 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[11]  Pedro Carreira,et al.  High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping : Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1-5 October, 2013 , 2013 .

[12]  Shweta Agarwala,et al.  Tailoring the Porosity of 3D Tin Oxide Nanostructures Using Urea for Sensing and Photovoltaic Applications , 2013 .

[13]  Atsushi Saito,et al.  Broadband superconducting microstrip patch antenna using additional gap-coupled resonators , 2006 .

[14]  Matti Mäntysalo,et al.  An inkjet-deposited antenna for 2.4 GHz applications , 2009 .

[15]  Katsuaki Suganuma,et al.  A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite , 2015, Advanced materials.

[16]  V. Thavasi,et al.  Mesophase ordering of TiO2 film with high surface area and strong light harvesting for dye-sensitized solar cell. , 2010, ACS applied materials & interfaces.

[17]  M. Dohler,et al.  IEEE Antennas and Propagation Society international symposium , 2003 .

[18]  S. E. Barbin,et al.  A silk-screen printed RFID tag antenna , 2015, 2015 Asia-Pacific Microwave Conference (APMC).

[19]  Zhiqiang Fang,et al.  A gravure printed antenna on shape-stable transparent nanopaper. , 2014, Nanoscale.

[20]  San Antonio,et al.  IEEE Antennas and Propagation Society International Symposium , 2002 .

[21]  R. Ramadoss,et al.  MEMS Based Electrostatically Tunable Circular Microstrip Patch Antenna , 2006, 2006 IEEE Annual Wireless and Microwave Technology Conference.

[22]  Lu Hai Li,et al.  Inductance Investigation of Screen-Printed Radio Frequency Identification Antennas , 2015 .

[23]  Zhirun Hu,et al.  Graphene Nanoflakes Printed Flexible Meandered-Line Dipole Antenna on Paper Substrate for Low-Cost RFID and Sensing Applications , 2016, IEEE Antennas and Wireless Propagation Letters.

[24]  M. Izutsu,et al.  Coplanar patch antennas: principle, simulation and experiment , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[25]  Wai Yee Yeong,et al.  Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties , 2016 .

[26]  M. Izutsu,et al.  Wideband coplanar waveguide fed coplanar patch antenna , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[27]  W. Yeong,et al.  Characterization and evaluation of 3D printed microfluidic chip for cell processing , 2016 .

[28]  Sima Noghanian,et al.  Flexible antenna for Wireless Body Area Network , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[29]  Indrasen Singh,et al.  Micro strip Patch Antenna and its Applications : a Survey , 2011 .

[30]  Sima Noghanian,et al.  Flexible textile antenna array , 2015, 2015 IEEE International Conference on Electro/Information Technology (EIT).

[31]  Pedro Carreira,et al.  High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping Proceedings of the 6th International Conference on Advanced Research in ... Leiria, Portugal, 1-5 October, 2013 , 2013 .