Cooperative interactions among CTA+, Br– and Ag+ during seeded growth of gold nanorods

[1]  Chao He,et al.  High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity , 2016 .

[2]  Kan Wang,et al.  Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy. , 2016, ACS nano.

[3]  G. U. Kulkarni,et al.  Facet selective etching of Au microcrystallites , 2015, Nano Research.

[4]  Zhehao Huang,et al.  Optically active chiral Ag nanowires , 2015, Science China Materials.

[5]  Yang Zhao,et al.  Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant. , 2015, Nanoscale.

[6]  D. Wright,et al.  Where's the silver? Imaging trace silver coverage on the surface of gold nanorods. , 2014, Journal of the American Chemical Society.

[7]  L. Liz‐Marzán,et al.  Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. , 2014, Nano letters.

[8]  C. Murray,et al.  Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. , 2013, Nano letters.

[9]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[10]  C. Murphy,et al.  The Quest for Shape Control: A History of Gold Nanorod Synthesis , 2013 .

[11]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[12]  C. Murray,et al.  Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. , 2013, Nano letters.

[13]  Erik C. Dreaden,et al.  The Golden Age: Gold Nanoparticles for Biomedicine , 2012 .

[14]  Cherie R. Kagan,et al.  Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. , 2012, ACS nano.

[15]  Peter Nordlander,et al.  Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. , 2011, Journal of the American Chemical Society.

[16]  P. Zijlstra,et al.  Chemical Kinetics of Gold Nanorod Growth in Aqueous CTAB Solutions , 2011 .

[17]  C. Mirkin,et al.  Shape control of gold nanoparticles by silver underpotential deposition. , 2011, Nano letters.

[18]  A. Agarwal,et al.  Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions , 2011, Proceedings of the National Academy of Sciences.

[19]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[20]  Yang Ren,et al.  Plasmonic/magnetic bifunctional nanoparticles. , 2011, Angewandte Chemie.

[21]  Kimberly Hamad-Schifferli,et al.  Effect of gold nanorod surface chemistry on cellular response. , 2011, ACS nano.

[22]  Liguang Xu,et al.  Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. , 2010, Angewandte Chemie.

[23]  Hong Ding,et al.  Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells , 2010, Nanotechnology.

[24]  R. Jin,et al.  The role of bromide ions in seeding growth of Au nanorods. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[25]  T. V. van Leeuwen,et al.  Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: lot-lot variations and influence on gold nanorod synthesis. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[26]  Xiaohua Huang,et al.  Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications , 2009, Advanced materials.

[27]  B. Korgel,et al.  Iodide in CTAB prevents gold nanorod formation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[28]  K. Hamad-Schifferli,et al.  Selective release of multiple DNA oligonucleotides from gold nanorods. , 2009, ACS nano.

[29]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[30]  Jiaxing Huang,et al.  Chemical synthesis of gold nanowires in acidic solutions. , 2008, Journal of the American Chemical Society.

[31]  F. Testard,et al.  Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[32]  N. Halas,et al.  Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies , 2008 .

[33]  Younan Xia,et al.  Controlling the Assembly of Silver Nanocubes through Selective Functionalization of Their Faces , 2008 .

[34]  B. Korgel,et al.  The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  C. Murphy,et al.  Role of ions in the colloidal synthesis of gold nanowires , 2007 .

[36]  Wei Qian,et al.  Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. , 2007, Nano letters.

[37]  K. Sokolov,et al.  Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.

[38]  W. Cao,et al.  A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion. , 2007, Journal of colloid and interface science.

[39]  Michael H. Huang,et al.  Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid , 2005 .

[40]  Philippe Guyot-Sionnest,et al.  Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. , 2005, The journal of physical chemistry. B.

[41]  Jin-Sil Choi,et al.  In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. , 2005, Journal of the American Chemical Society.

[42]  Daniel A. Zweifel,et al.  Sulfide-Arrested Growth of Gold Nanorods. , 2005, Chemistry of materials : a publication of the American Chemical Society.

[43]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[44]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[45]  Paul Mulvaney,et al.  Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions , 2004 .

[46]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[48]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[49]  Catherine J. Murphy,et al.  An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods , 2003 .

[50]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[51]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[52]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[53]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties. , 1997 .

[54]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[55]  Kazuaki Ito,et al.  Anion chromatography using octadecylsilane reversed-phase columns coated with cetyltrimethylammonium and its application to nitrite and nitrate in seawater , 1991 .