Testing accuracy in 2D and 3D geometric morphometric methods for cut mark identification and classification

The analysis of bone surface modifications (BSMs) is a prominent part of paleoanthropological studies, namely taphonomic research. Behavioral interpretations of the fossil record hinge strongly upon correct assessment of BSMs. With the significant impact of microscopic analysis to the study of BSMs, multiple authors have discussed the reliability of these technological improvements for gaining resolution in BSM discrimination. While a certain optimism is present, some important questions are ignored and others overemphasized without appropriate empirical support. This specifically affects the study of cut marks. A diversity of geometric morphometric approaches applied to the study of cut marks have resulted in the coexistence (and competition) of different 2D and 3D methods. The present work builds upon the foundation of experiments presented by Maté-González et al. (2015), Courtenay et al. (2017) and Otárola-Castillo et al. (2018) to contrast for the first time 2D and 3D methods in their resolution of cut mark interpretation and classification. The results presented here show that both approaches are equally valid and that the use of sophisticated 3D methods do not contribute to an improvement in accuracy.

[1]  G. Zararsiz,et al.  MVN: An R Package for Assessing Multivariate Normality , 2014, R J..

[2]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[3]  Diego González-Aguilera,et al.  3D analysis of cut marks using a new geometric morphometric methodological approach , 2019, Archaeological and Anthropological Sciences.

[4]  Sandra L. Olsen The identification of stone and metal toolmarks on bone artifacts , 1988 .

[5]  Diego González-Aguilera,et al.  A new approach to raw material use in the exploitation of animal carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): a micro‐photogrammetric and geometric morphometric analysis of fossil cut marks , 2017 .

[6]  C. Klingenberg MorphoJ: an integrated software package for geometric morphometrics , 2011, Molecular ecology resources.

[7]  P. Shipman,et al.  Surface modification on bone: Trampling versus butchery , 1988 .

[8]  W H Gilbert,et al.  Digital imaging of bone and tooth modification , 2000, The Anatomical record.

[9]  Léon Henri-Martin Présentation d'ossements utilisés de l'époque moustérienne , 1907 .

[10]  Anuj Srivastava,et al.  Statistical Shape Analysis , 2014, Computer Vision, A Reference Guide.

[11]  Johnna Fisher Bone surface modifications in zooarchaeology , 1995 .

[12]  Diego González-Aguilera,et al.  Statistical Comparison between Low-Cost Methods for 3D Characterization of Cut-Marks on Bones , 2017, Remote. Sens..

[13]  P. O'higgins,et al.  Facial growth in Cercocebus torquatus: an application of three‐dimensional geometric morphometric techniques to the study of morphological variation , 1998, Journal of anatomy.

[14]  Pat Shipman,et al.  Life History of a Fossil: An Introduction to Taphonomy and Paleoecology , 1981 .

[15]  D. Slice Landmark coordinates aligned by procrustes analysis do not lie in Kendall's shape space. , 2001, Systematic biology.

[16]  Power Estimation in Multivariate Analysis of Variance , 2007 .

[17]  M. Domínguez‐Rodrigo Meat-eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): an experimental approach using cut-mark data. , 1997, Journal of human evolution.

[18]  Silvia M. Bello,et al.  Application of 3-dimensional microscopy and micro-CT scanning to the analysis of Magdalenian portable art on bone and antler , 2013 .

[19]  Heather Bonney,et al.  An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades. , 2014, American journal of physical anthropology.

[20]  Juan Francisco Palomeque-González,et al.  FLK West (Lower Bed II, Olduvai Gorge, Tanzania): a new early Acheulean site with evidence for human exploitation of fauna , 2017 .

[21]  Erik Otárola-Castillo,et al.  Differentiating between cutting actions on bone using 3D geometric morphometrics and Bayesian analyses with implications to human evolution , 2018 .

[22]  David R. Braun,et al.  Investigating the Signature of Aquatic Resource Use within Pleistocene Hominin Dietary Adaptations , 2013, PloS one.

[23]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[24]  K. Lupo Butchering marks and carcass acquisition strategies : distinguishing hunting from scavenging in archaeological contexts , 1994 .

[25]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[26]  R. Barba,et al.  A Study of Cut Marks on Small-Sized Carcasses and its Application to the Study of Cut-Marked Bones from Small Mammals at the FLK Zinj Site , 2005 .

[27]  J. Vergès,et al.  Trampling versus cut marks on chemically altered surfaces: An experimental approach and archaeological application at the Barranc de la Boella site (la Canonja, Tarragona, Spain) , 2014 .

[28]  C. Fritz Towards the Reconstruction of Magdalenian Artistic Techniques: the Contribution of Microscopic Analysis of Mobiliary Art , 1999, Cambridge Archaeological Journal.

[29]  T. E. White Observations on the Butchering Technique of Some Aboriginal Peoples: I , 1952, American Antiquity.

[30]  M. Domínguez‐Rodrigo Hunting and Scavenging by Early Humans: The State of the Debate , 2002 .

[31]  Y. Fernández-Jalvo,et al.  Compressive marks from gravel substrate on vertebrate remains: a preliminary experimental study , 2014 .

[32]  Silvia M. Bello,et al.  New Results from the Examination of Cut-Marks Using Three-Dimensional Imaging , 2011 .

[33]  J. Yravedra,et al.  Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis , 2009 .

[34]  F. Rohlf Shape Statistics: Procrustes Superimpositions and Tangent Spaces , 1999 .

[35]  Manuel Domínguez-Rodrigo,et al.  Taphonomic identification of cut marks made with lithic handaxes: an experimental study , 2010 .

[36]  Juan Francisco Palomeque-González,et al.  Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes , 2018, Archaeological and Anthropological Sciences.

[37]  A. Fiorillo Introduction to the Identification of Trample Marks , 1984 .

[38]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Léon Henri-Martin Présentation ďossements de Renne portant des lésions d'origine humaine et animale , 1906 .

[40]  A. Behrensmeyer,et al.  Trampling as a cause of bone surface damage and pseudo-cutmarks , 1986, Nature.

[41]  Silvia M. Bello,et al.  Quantitative micromorphological analyses of cut marks produced by ancient and modern handaxes , 2009 .

[42]  M. E. Lartet On the Coexistence of Man with certain Extinct Quadrupeds, proved by Fossil Bones, from various Pleistocene Deposits, bearing Incisions made by sharp Instruments , 1860, Quarterly Journal of the Geological Society of London.

[43]  J. O'connell,et al.  Cut and Tooth Mark Distributions on Large Animal Bones: Ethnoarchaeological Data from the Hadza and Their Implications For Current Ideas About Early Human Carnivory , 2002 .

[44]  Jacopo Crezzini,et al.  Morphometrical Analysis on Cut Marks Using a 3D Digital Microscope , 2012 .

[45]  S. Bello,et al.  Cut mark micro-morphometrics associated with the stage of carcass decay: A pilot study using three-dimensional microscopy , 2018 .

[46]  T. E. White Observations on the Butchering Technique of some Aboriginal Peoples Nos. 3, 4, 5, and 6 , 1954, American Antiquity.

[47]  Diego González-Aguilera,et al.  On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: The modern Olduvai Carnivore Site (Tanzania) , 2017 .

[48]  Phillip L. Walker,et al.  Butchering and Stone Tool Function , 1978, American Antiquity.

[49]  P. Shipman,et al.  Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record , 1983 .

[50]  H. Greenfield Slicing Cut Marks on Animal Bones: Diagnostics for Identifying Stone Tool Type and Raw Material , 2006 .

[51]  Nilssen Pj An actualistic butchery study in South Africa and its implications for reconstructing hominid strategies of carcass acquisition and butchery in the upper Pleistocene and plio-Pleistocene , 2016 .

[52]  S. Capaldo Simulating the Formation of Dual-Patterned Archaeofaunal Assemblages with Experimental Control Samples , 1998 .

[53]  Juan Francisco Palomeque-González,et al.  The use of Micro-Photogrammetry and Geometric Morphometrics for identifying carnivore agency in bone assemblages , 2017 .

[54]  Jacopo Crezzini,et al.  Wild cats and cut marks: Exploitation of Felis silvestris in the Mesolithic of Galgenbühel/Dos de la Forca (South Tyrol, Italy) , 2014 .

[55]  Léon Henri-Martin Désarticulations de quelques régions chez les Ruminants et le Cheval à l'époque moustérienne , 1909 .

[56]  Frank Konietschke,et al.  Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs with the R Package MANOVA.RM , 2018, R J..

[57]  Kildo Choi,et al.  Shell tool use by early members of Homo erectus in Sangiran, central Java, Indonesia: cut mark evidence , 2007 .

[58]  T. E. White Observations on the Butchering Technics of Some Aboriginal Peoples Numbers 7, 8, and 9 , 1955, American Antiquity.

[59]  Christophe Soligo,et al.  A new method for the quantitative analysis of cutmark micromorphology , 2008 .

[60]  Jason E. Lewis Identifying sword marks on bone: criteria for distinguishing between cut marks made by different classes of bladed weapons , 2008 .

[61]  Diego González-Aguilera,et al.  Micro-photogrammetric characterization of cut marks on bones , 2015 .

[62]  R. Lyman 5 – Archaeofaunas and Butchery Studies: A Taphonomic Perspective , 1987 .

[63]  M. Domínguez‐Rodrigo,et al.  An Experimental Study of the Anatomical Distribution of Cut Marks Created by Filleting and Disarticulation on Long Bone Ends , 2013 .

[64]  T. Kaiser,et al.  The application of 3D-microprofilometry as a tool in the surface diagnosis of fossil and sub-fossil vertebrate hard tissue. An example from the Pliocene Upper Laetolil Beds, Tanzania , 2001 .

[65]  M. Brickley,et al.  Analysis and interpretation of flint toolmarks found on bones from West Tump long barrow, Gloucestershire , 2004 .

[66]  Julien Louys,et al.  Differentiating bamboo from stone tool cut marks in the zooarchaeological record, with a discussion on the use of bamboo knives , 2007 .

[67]  H. Greenfield The Origins of Metallurgy: Distinguishing Stone from Metal Cut-marks on Bones from Archaeological Sites , 1999 .

[68]  M. Domínguez‐Rodrigo,et al.  A new protocol to differentiate trampling marks from butchery cut marks , 2009 .

[69]  Stephen R. Merritt,et al.  A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. , 2017, Journal of human evolution.

[70]  E J Bartelink,et al.  Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. , 2001, Journal of forensic sciences.

[71]  Juan Francisco Palomeque-González,et al.  Flint and Quartzite: Distinguishing Raw Material Through Bone Cut Marks , 2018 .

[72]  E M During,et al.  Mechanical surface analysis of bone: a case study of cut marks and enamel hypoplasia on a Neolithic cranium from Sweden. , 1991, American journal of physical anthropology.

[73]  Edgar Erdfelder,et al.  G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences , 2007, Behavior research methods.

[74]  Diego González-Aguilera,et al.  Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and micro‐photogrammetry , 2017, Journal of microscopy.

[75]  Diego González-Aguilera,et al.  Discerning carnivore agency through the three-dimensional study of tooth pits: Revisiting crocodile feeding behaviour at FLK- Zinj and FLK NN3 (Olduvai Gorge, Tanzania) , 2017 .

[76]  H. Martin Recherches sur l'évolution du moustérien dans le gisement de la Quina (Charente) , 1907 .

[77]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .