A Lambda Calculus for Quantum Computation

The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine and continues to be of enormous benefit in the classical theory of computation. We propose that quantum computation, like its classical counterpart, may benefit from a version of the lambda calculus suitable for expressing and reasoning about quantum algorithms. In this paper we develop a quantum lambda calculus as an alternative model of quantum computation, which combines some of the benefits of both the quantum Turing machine and the quantum circuit models. The calculus turns out to be closely related to the linear lambda calculi used in the study of linear logic. We set up a computational model and an equational proof system for this calculus, and we argue that it is equivalent to the quantum Turing machine.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  H. S. Allen The Quantum Theory , 1928, Nature.

[4]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[5]  Robert Hieb,et al.  The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..

[6]  John C. Mitchell,et al.  Foundations for programming languages , 1996, Foundation of computing series.

[7]  Luciano Serafini,et al.  Toward an architecture for quantum programming , 2001, cs/0103009.

[8]  Henry G. Baker,et al.  Lively linear Lisp: “look ma, no garbage!” , 1992, SIGP.

[9]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[10]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[11]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[12]  B. Ömer Classical Concepts in Quantum Programming , 2002, quant-ph/0211100.

[13]  Philip Maymin Extending the Lambda Calculus to Express Randomized and Quantumized Algorithms , 1996 .

[14]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[15]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[16]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[17]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[18]  V. Pratt,et al.  Linear Logic For Generalized Quantum Mechanics , 1992, Workshop on Physics and Computation.

[19]  Mitchell Wand,et al.  Essentials of programming languages , 2008 .

[20]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[21]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[22]  D. Dieks Communication by EPR devices , 1982 .

[23]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[25]  Samson Abramsky,et al.  Physical Traces: Quantum vs. Classical Information Processing , 2002, CTCS.

[26]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[27]  Gregory David Baker “ Qgol ” A system for simulating quantum computations : Theory , Implementation and Insights , 2001 .

[28]  Andr'e van Tonder,et al.  Quantum Computation, Categorical Semantics and Linear Logic , 2003, ArXiv.

[29]  Jeff W. Sanders,et al.  Quantum Programming , 2000, MPC.

[30]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[31]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Henry G. Baker A “linear logic” Quicksort , 1994, SIGP.

[33]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[34]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[35]  John W. Backus,et al.  Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.

[36]  Paul Hudak,et al.  The Haskell School of Expression , 2000 .

[37]  Samson Abramsky,et al.  A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..

[38]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[39]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[40]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  Ruth E. Davis Truth, deduction, and computation - logic and semantics for computer science , 1989, Principles of computer science series.

[42]  V. Roychowdhury,et al.  On Universal and Fault-Tolerant Quantum Computing , 1999, quant-ph/9906054.

[43]  Martin Odersky,et al.  Call-by-name, call-by-value, call-by-need and the linear lambda calculus , 1995, MFPS.

[44]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[45]  Henry G. Baker,et al.  “Use-once” variables and linear objects: storage management, reflection and multi-threading , 1995, SIGP.

[46]  Carl A. Gunter Semantics of programming languages: structures and techniques , 1993, Choice Reviews Online.

[47]  Philip Z. Maymin The lambda-q calculus can efficiently simulate quantum computers , 1997, quant-ph/9702057.

[48]  Haskell B. Curry,et al.  Combinatory Logic, Volume I , 1959 .

[49]  Philip Wadler,et al.  A Taste of Linear Logic , 1993, MFCS.

[50]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[51]  Erik Barendsen,et al.  Conventional and Uniqueness Typing in Graph Rewrite Systems , 1993, FSTTCS.

[52]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[53]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[54]  Philip Wadler,et al.  A Syntax for Linear Logic , 1993, MFPS.

[55]  Philip Wadler,et al.  Operational Interpretations of Linear Logic , 1999, Theor. Comput. Sci..

[56]  Bernhard Ömer,et al.  A Procedural Formalism for Quantum Computing , 2002 .

[57]  A. Church The calculi of lambda-conversion , 1941 .

[58]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[59]  Elham Kashefi Quantum Domain Theory - Definitions and Applications , 2003, ArXiv.

[60]  Carl A. Gunter,et al.  Reference counting as a computational interpretation of linear logic , 1996, Journal of Functional Programming.