A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION
暂无分享,去创建一个
[1] R. Hložek,et al. Planck data reconsidered , 2013, 1312.3313.
[2] R. Bouwens,et al. FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.
[3] C. Conselice,et al. The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.
[4] A. Conley,et al. Constraining The Ly Alpha Escape Fraction With Far- Infrared Observations Of Ly Alpha Emitters , 2014 .
[5] M. Norman,et al. The birth of a galaxy – III. Propelling reionization with the faintest galaxies , 2014, 1403.6123.
[6] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[7] A. Fontana,et al. Constraints on the star-formation rate of z ~ 3 LBGs with measured metallicity in the CANDELS GOODS-South field , 2014, 1403.0743.
[8] J. Diego,et al. YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.
[9] H. Ferguson,et al. STEADILY INCREASING STAR FORMATION RATES IN GALAXIES OBSERVED AT 3 ≲ z ≲ 5 IN THE CANDELS/GOODS-S FIELD , 2014, 1403.6198.
[10] L. Bradley,et al. THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.
[11] C. Fryer,et al. INTERPRETING SHORT GAMMA-RAY BURST PROGENITOR KICKS AND TIME DELAYS USING THE HOST GALAXY–DARK MATTER HALO CONNECTION , 2014, 1401.7986.
[12] Z. Haiman,et al. Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies , 2014, 1401.7676.
[13] M. McQuinn,et al. A physical understanding of how reionization suppresses accretion on to dwarf haloes , 2014, 1401.0737.
[14] R. Wechsler,et al. MERGERS AND MASS ACCRETION FOR INFALLING HALOS BOTH END WELL OUTSIDE CLUSTER VIRIAL RADII , 2013, 1310.2239.
[15] M. L. N. Ashby,et al. THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.
[16] A. Loeb,et al. A predicted new population of UV-faint galaxies at z ≳ 4 , 2013, 1308.2030.
[17] R. Bouwens,et al. UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.
[18] N. Katz,et al. An empirical model for the star formation history in dark matter haloes , 2013, 1306.0650.
[19] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[20] O. Lahav,et al. A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.
[21] R. Bouwens,et al. SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.
[22] D. Schaerer,et al. Properties of z ~ 3–6 Lyman break galaxies - II. Impact of nebular emission at high redshift , 2012, 1207.3663.
[23] A. Pontzen,et al. Cold dark matter heats up , 2014, Nature.
[24] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[25] J. Bock,et al. CONSTRAINING THE Lyα ESCAPE FRACTION WITH FAR-INFRARED OBSERVATIONS OF Lyα EMITTERS , 2013, 1312.4963.
[26] A. Inoue,et al. Effect of the Remnant Mass in Estimating the Stellar Mass of Galaxies , 2013, 1310.0879.
[27] R. Wechsler,et al. USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME , 2013, 1308.3232.
[28] J. Rhodes,et al. EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.
[29] Fayin Wang,et al. The high-redshift star formation rate derived from GRBs: possible origin and cosmic reionization , 2013, 1401.5864.
[30] A. Goulding,et al. BLACK HOLE VARIABILITY AND THE STAR FORMATION–ACTIVE GALACTIC NUCLEUS CONNECTION: DO ALL STAR-FORMING GALAXIES HOST AN ACTIVE GALACTIC NUCLEUS? , 2013, 1306.3218.
[31] M. Brodwin,et al. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES , 2013, Proceedings of the International Astronomical Union.
[32] A. Hopkins,et al. The Cosmic Star Formation Rate from the Faintest Galaxies in the Unobservable Universe , 2013, 1305.1630.
[33] O. Ilbert,et al. Connecting stellar mass and star-formation rate to dark matter halo mass out to z ∼ 2 , 2012, 1203.5828.
[34] Michal Maciejewski,et al. Structure finding in cosmological simulations: the state of affairs , 2013, 1304.0585.
[35] J. Dunlop,et al. THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.
[36] C. Conroy,et al. THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCE z = 2 , 2013, 1301.4497.
[37] M. Blanton,et al. PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.
[38] J. Dunlop,et al. NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.
[39] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[40] Ilian T. Iliev,et al. The halo mass function through the cosmic ages , 2012, 1212.0095.
[41] J. Dunlop,et al. Simulating the assembly of galaxies at redshifts z = 6–12 , 2012, 1211.1034.
[42] D. Narayanan,et al. The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies , 2012, 1210.6037.
[43] R. Wechsler,et al. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.
[44] A. Fontana,et al. The ages, masses and star formation rates of spectroscopically confirmed z ˜ 6 galaxies in CANDELS , 2012, 1207.2727.
[45] J. Tinker,et al. THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.
[46] R. Teyssier,et al. Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.
[47] J. Tinker,et al. Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.
[48] S. White,et al. Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.
[49] Michele Cirasuolo,et al. A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.
[50] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[51] R. Bouwens,et al. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.
[52] A. Kravtsov,et al. TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012, 1210.4957.
[53] R. Wechsler,et al. RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS , 2012, 1209.3309.
[54] Risa H. Wechsler,et al. ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY , 2012, 1209.3013.
[55] R. Bouwens,et al. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.
[56] K. Finlator,et al. CONSTRAINTS ON THE IONIZING EFFICIENCY OF THE FIRST GALAXIES , 2012, 1209.1387.
[57] J. Dunlop,et al. KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.
[58] M. White,et al. A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS , 2012, 1208.3198.
[59] B. Willman,et al. BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES , 2012, 1207.0007.
[60] D. Elbaz,et al. DISSECTING THE STELLAR-MASS–SFR CORRELATION IN z = 1 STAR-FORMING DISK GALAXIES , 2012, 1206.1704.
[61] M. Norman,et al. The birth of a galaxy – II. The role of radiation pressure , 2012, 1206.1043.
[62] G. Brammer,et al. THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.
[63] C. Steidel,et al. THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.
[64] K. Nagamine,et al. Duty cycle and the increasing star formation history of z ≥ 6 galaxies , 2012, 1204.4846.
[65] R. Bouwens,et al. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.
[66] D. Elbaz,et al. THE HIDDEN “AGN MAIN SEQUENCE”: EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH–M* RELATION , 2012, 1204.2824.
[67] P. Kroupa,et al. Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity , 2012, 1202.4755.
[68] O. Dor'e,et al. Where stars form and live at high redshift: clues from the infrared , 2012, 1201.0546.
[69] H. Ferguson,et al. HOW DO STAR-FORMING GALAXIES AT z > 3 ASSEMBLE THEIR MASSES? , 2011, 1111.1233.
[70] Risa H. Wechsler,et al. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.
[71] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[72] H. Mo,et al. EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS , 2011, 1110.1420.
[73] M. Franx,et al. UV-CONTINUUM SLOPES AT z ∼ 4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.
[74] Samuel N. Leitner. ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES , 2011, 1108.0938.
[75] M. Franx,et al. LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.
[76] Piero Madau,et al. RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.
[77] M. Boylan-Kolchin,et al. The Milky Way’s bright satellites as an apparent failure of ΛCDM , 2011, 1111.2048.
[78] C. Conselice,et al. H alpha Star Formation Rates in Massive Galaxies at z ~ 1 , 2011, 1110.5586.
[79] D. Maccagni,et al. The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys , 2011, 1109.1005.
[80] B. Robertson,et al. CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.
[81] R. Davé,et al. GALACTIC OUTFLOWS AND PHOTOIONIZATION HEATING IN THE REIONIZATION EPOCH , 2011, 1106.4321.
[82] Davis,et al. A CENSUS OF STAR-FORMING GALAXIES AT z = 1–3 IN THE SUBARU DEEP FIELD , 2011, 1104.5019.
[83] Kyoung-Soo Lee,et al. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.
[84] K. Nagamine,et al. Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.
[85] Tristan L. Smith,et al. NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.
[86] A. Dekel,et al. On the puzzling plateau in the specific star formation rate at z= 2–7 , 2011, 1103.3011.
[87] S. Driver,et al. The GALEX–SDSS NUV and FUV flux density and local star formation rate , 2011, 1101.5187.
[88] C. Conselice,et al. A deep probe of the galaxy stellar mass functions at z ∼ 1―3 with the GOODS NICMOS Survey , 2011, 1101.2867.
[89] D. Elbaz,et al. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.
[90] Subaru Telescope,et al. Cosmic Star-Formation Activity at z = 2.2 Probed by H α Emission-Line Galaxies , 2010, 1012.4860.
[91] H. Rix,et al. THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.
[92] M. Norman,et al. THE BIRTH OF A GALAXY: PRIMORDIAL METAL ENRICHMENT AND STELLAR POPULATIONS , 2010, 1011.2632.
[93] Iap,et al. ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.
[94] Xiaohui Fan,et al. THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7 , 2010, 1009.3022.
[95] J. Pel,et al. The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .
[96] P. Kroupa,et al. Top-heavy integrated galactic stellar initial mass functions in starbursts , 2010, 1011.3814.
[97] U. Wyoming,et al. THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY , 2010, 1011.2759.
[98] H. Hildebrandt,et al. The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.
[99] Garth D. Illingworth,et al. THE MOST MASSIVE GALAXIES AT 3.0 ⩽ z < 4.0 IN THE NEWFIRM MEDIUM-BAND SURVEY: PROPERTIES AND IMPROVED CONSTRAINTS ON THE STELLAR MASS FUNCTION , 2010, 1009.0269.
[100] T. Ichikawa,et al. MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z ∼ 3 , 2010, 1009.0002.
[101] R. Bouwens,et al. EVOLUTION OF GALAXY STELLAR MASS FUNCTIONS, MASS DENSITIES, AND MASS-TO-LIGHT RATIOS FROM z ∼ 7 TO z ∼ 4 , 2010, 1008.3901.
[102] H. Ferguson,et al. The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.
[103] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[104] Marcia J. Rieke,et al. THE EVOLUTION OF THE STAR FORMATION RATE OF GALAXIES AT 0.0 ⩽ z ⩽ 1.2 , 2010, 1006.4359.
[105] J. Anderson,et al. TYPE Ibc SUPERNOVAE IN DISTURBED GALAXIES: EVIDENCE FOR A TOP-HEAVY INITIAL MASS FUNCTION , 2010, 1005.0511.
[106] R. Bouwens,et al. THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.
[107] A. Klypin,et al. DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.
[108] D. Schaerer,et al. On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.
[109] M. Boylan-Kolchin,et al. The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations , 2010, 1001.2304.
[110] Princeton University.,et al. A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.
[111] J. Gunn,et al. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.
[112] F. Marulli,et al. Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type , 2009, 0910.1093.
[113] M. L. N. Ashby,et al. The evolution of the hard X-ray luminosity function of AGN , 2009, 0910.1141.
[114] Andrew M. Hopkins,et al. THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.
[115] J. Gunn,et al. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS , 2009, 0904.0002.
[116] R. Somerville,et al. CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.
[117] J. McBride,et al. Mass accretion rates and histories of dark matter haloes , 2009, 0902.3659.
[118] K. Bundy,et al. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.
[119] P. McCarthy,et al. GLOBAL STAR FORMATION RATE DENSITY OVER 0.7 < z < 1.9 , 2009, 0902.0736.
[120] David Elbaz,et al. Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts , 2009, 0901.3783.
[121] R. Wechsler,et al. MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS , 2008, 0808.1727.
[122] S. More,et al. Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.
[123] S. Wuyts,et al. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.
[124] C. Steidel,et al. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.
[125] J. Gunn,et al. THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .
[126] S. Maddox,et al. The star formation history of K-selected galaxies , 2008, 0808.3139.
[127] Xiaohu Yang,et al. THE SUBHALO–SATELLITE CONNECTION AND THE FATE OF DISRUPTED SATELLITE GALAXIES , 2008, 0808.2526.
[128] R. Cen,et al. IONIZING PHOTON ESCAPE FRACTIONS FROM HIGH-REDSHIFT DWARF GALAXIES , 2008, 0808.2477.
[129] M. Scodeggio,et al. THE DUST-UNBIASED COSMIC STAR-FORMATION HISTORY FROM THE 20 CM VLA-COSMOS SURVEY , 2008, 0808.0493.
[130] N. Yoshida,et al. The First Galaxies , 2008, Proceedings of the International Astronomical Union.
[131] S. Driver,et al. On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.
[132] Michael S. Warren,et al. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.
[133] M. Stiavelli,et al. Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.
[134] Onsi Fakhouri,et al. The nearly universal merger rate of dark matter haloes in ΛCDM cosmology , 2007, 0710.4567.
[135] G. Rieke,et al. The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.
[136] A. Cimatti,et al. NICMOS measurements of the near-infrared background , 2007, 0712.2880.
[137] H. Tananbaum,et al. The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.
[138] A. Cimatti,et al. Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.
[139] Benjamin D. Johnson,et al. UV Star Formation Rates in the Local Universe , 2007, 0704.3611.
[140] H. Rix,et al. The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.
[141] Columbia,et al. Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.
[142] G. Hasinger,et al. Relativistic Astrophysics Legacy and Cosmology – Einstein’s , 2007 .
[143] S. Okamura,et al. Luminosity Functions of Lyman Break Galaxies at z ~ 4 and z ~ 5 in the Subaru Deep Field , 2006, astro-ph/0608512.
[144] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[145] R. Wechsler,et al. Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.
[146] G. Hill,et al. SPECIFIC STAR FORMATION RATES , 2005, astro-ph/0509059.
[147] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[148] H. Zinnecker,et al. The initial mass function 50 years later , 2005 .
[149] K. Rice,et al. Protostars and Planets V , 2005 .
[150] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[151] R. Wechsler,et al. The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .
[152] A. Loeb,et al. The Reionization of the Universe by the First Stars and Quasars , 2000, astro-ph/0010467.
[153] S. M. Fall,et al. A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.
[154] N. Gnedin. Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.
[155] A. Klypin,et al. The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes , 1998, astro-ph/9812311.
[156] G. Bryan,et al. Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.
[157] A. Klypin,et al. Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.
[158] E. Salpeter. The Luminosity function and stellar evolution , 1955 .