A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION

We show that the ratio of galaxies' specific star formation rates (SSFRs) to their host halos' specific mass accretion rates (SMARs) strongly constrains how the galaxies' stellar masses, SSFRs, and host halo masses evolve over cosmic time. This evolutionary constraint provides a simple way to probe z > 8 galaxy populations without direct observations. Tests of the method with galaxy properties at z = 4 successfully reproduce the known evolution of the stellar mass–halo mass (SMHM) relation, galaxy SSFRs, and the cosmic star formation rate (CSFR) for 5 < z < 8. We then predict the continued evolution of these properties for 8 < z < 15. In contrast to the nonevolution in the SMHM relation at z < 4, the median galaxy mass at fixed halo mass increases strongly at z > 4. We show that this result is closely linked to the flattening in galaxy SSFRs at z > 2 compared to halo SMARs; we expect that average galaxy SSFRs at fixed stellar mass will continue their mild evolution to z ∼ 15. The expected CSFR shows no breaks or features at z > 8.5; this constrains both reionization and the possibility of a steep falloff in the CSFR at z = 9–10. Finally, we make predictions for stellar mass and luminosity functions for the James Webb Space Telescope, which should be able to observe one galaxy with M* ≳ 108 M☉ per 103 Mpc3 at z = 9.6 and one such galaxy per 104 Mpc3 at z = 15.

[1]  R. Hložek,et al.  Planck data reconsidered , 2013, 1312.3313.

[2]  R. Bouwens,et al.  FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.

[3]  C. Conselice,et al.  The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.

[4]  A. Conley,et al.  Constraining The Ly Alpha Escape Fraction With Far- Infrared Observations Of Ly Alpha Emitters , 2014 .

[5]  M. Norman,et al.  The birth of a galaxy – III. Propelling reionization with the faintest galaxies , 2014, 1403.6123.

[6]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[7]  A. Fontana,et al.  Constraints on the star-formation rate of z ~ 3 LBGs with measured metallicity in the CANDELS GOODS-South field , 2014, 1403.0743.

[8]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.

[9]  H. Ferguson,et al.  STEADILY INCREASING STAR FORMATION RATES IN GALAXIES OBSERVED AT 3 ≲ z ≲ 5 IN THE CANDELS/GOODS-S FIELD , 2014, 1403.6198.

[10]  L. Bradley,et al.  THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.

[11]  C. Fryer,et al.  INTERPRETING SHORT GAMMA-RAY BURST PROGENITOR KICKS AND TIME DELAYS USING THE HOST GALAXY–DARK MATTER HALO CONNECTION , 2014, 1401.7986.

[12]  Z. Haiman,et al.  Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies , 2014, 1401.7676.

[13]  M. McQuinn,et al.  A physical understanding of how reionization suppresses accretion on to dwarf haloes , 2014, 1401.0737.

[14]  R. Wechsler,et al.  MERGERS AND MASS ACCRETION FOR INFALLING HALOS BOTH END WELL OUTSIDE CLUSTER VIRIAL RADII , 2013, 1310.2239.

[15]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[16]  A. Loeb,et al.  A predicted new population of UV-faint galaxies at z ≳ 4 , 2013, 1308.2030.

[17]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[18]  N. Katz,et al.  An empirical model for the star formation history in dark matter haloes , 2013, 1306.0650.

[19]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[20]  O. Lahav,et al.  A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.

[21]  R. Bouwens,et al.  SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.

[22]  D. Schaerer,et al.  Properties of z ~ 3–6 Lyman break galaxies - II. Impact of nebular emission at high redshift , 2012, 1207.3663.

[23]  A. Pontzen,et al.  Cold dark matter heats up , 2014, Nature.

[24]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[25]  J. Bock,et al.  CONSTRAINING THE Lyα ESCAPE FRACTION WITH FAR-INFRARED OBSERVATIONS OF Lyα EMITTERS , 2013, 1312.4963.

[26]  A. Inoue,et al.  Effect of the Remnant Mass in Estimating the Stellar Mass of Galaxies , 2013, 1310.0879.

[27]  R. Wechsler,et al.  USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME , 2013, 1308.3232.

[28]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[29]  Fayin Wang,et al.  The high-redshift star formation rate derived from GRBs: possible origin and cosmic reionization , 2013, 1401.5864.

[30]  A. Goulding,et al.  BLACK HOLE VARIABILITY AND THE STAR FORMATION–ACTIVE GALACTIC NUCLEUS CONNECTION: DO ALL STAR-FORMING GALAXIES HOST AN ACTIVE GALACTIC NUCLEUS? , 2013, 1306.3218.

[31]  M. Brodwin,et al.  A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES , 2013, Proceedings of the International Astronomical Union.

[32]  A. Hopkins,et al.  The Cosmic Star Formation Rate from the Faintest Galaxies in the Unobservable Universe , 2013, 1305.1630.

[33]  O. Ilbert,et al.  Connecting stellar mass and star-formation rate to dark matter halo mass out to z ∼ 2 , 2012, 1203.5828.

[34]  Michal Maciejewski,et al.  Structure finding in cosmological simulations: the state of affairs , 2013, 1304.0585.

[35]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[36]  C. Conroy,et al.  THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCE z = 2 , 2013, 1301.4497.

[37]  M. Blanton,et al.  PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.

[38]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[39]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[40]  Ilian T. Iliev,et al.  The halo mass function through the cosmic ages , 2012, 1212.0095.

[41]  J. Dunlop,et al.  Simulating the assembly of galaxies at redshifts z = 6–12 , 2012, 1211.1034.

[42]  D. Narayanan,et al.  The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies , 2012, 1210.6037.

[43]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[44]  A. Fontana,et al.  The ages, masses and star formation rates of spectroscopically confirmed z ˜ 6 galaxies in CANDELS , 2012, 1207.2727.

[45]  J. Tinker,et al.  THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.

[46]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[47]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[48]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[49]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[50]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[51]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.

[52]  A. Kravtsov,et al.  TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012, 1210.4957.

[53]  R. Wechsler,et al.  RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS , 2012, 1209.3309.

[54]  Risa H. Wechsler,et al.  ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY , 2012, 1209.3013.

[55]  R. Bouwens,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.

[56]  K. Finlator,et al.  CONSTRAINTS ON THE IONIZING EFFICIENCY OF THE FIRST GALAXIES , 2012, 1209.1387.

[57]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[58]  M. White,et al.  A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS , 2012, 1208.3198.

[59]  B. Willman,et al.  BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES , 2012, 1207.0007.

[60]  D. Elbaz,et al.  DISSECTING THE STELLAR-MASS–SFR CORRELATION IN z = 1 STAR-FORMING DISK GALAXIES , 2012, 1206.1704.

[61]  M. Norman,et al.  The birth of a galaxy – II. The role of radiation pressure , 2012, 1206.1043.

[62]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[63]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[64]  K. Nagamine,et al.  Duty cycle and the increasing star formation history of z ≥ 6 galaxies , 2012, 1204.4846.

[65]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[66]  D. Elbaz,et al.  THE HIDDEN “AGN MAIN SEQUENCE”: EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH–M* RELATION , 2012, 1204.2824.

[67]  P. Kroupa,et al.  Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity , 2012, 1202.4755.

[68]  O. Dor'e,et al.  Where stars form and live at high redshift: clues from the infrared , 2012, 1201.0546.

[69]  H. Ferguson,et al.  HOW DO STAR-FORMING GALAXIES AT z > 3 ASSEMBLE THEIR MASSES? , 2011, 1111.1233.

[70]  Risa H. Wechsler,et al.  GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.

[71]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[72]  H. Mo,et al.  EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS , 2011, 1110.1420.

[73]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[74]  Samuel N. Leitner ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES , 2011, 1108.0938.

[75]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[76]  Piero Madau,et al.  RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.

[77]  M. Boylan-Kolchin,et al.  The Milky Way’s bright satellites as an apparent failure of ΛCDM , 2011, 1111.2048.

[78]  C. Conselice,et al.  H alpha Star Formation Rates in Massive Galaxies at z ~ 1 , 2011, 1110.5586.

[79]  D. Maccagni,et al.  The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys , 2011, 1109.1005.

[80]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[81]  R. Davé,et al.  GALACTIC OUTFLOWS AND PHOTOIONIZATION HEATING IN THE REIONIZATION EPOCH , 2011, 1106.4321.

[82]  Davis,et al.  A CENSUS OF STAR-FORMING GALAXIES AT z = 1–3 IN THE SUBARU DEEP FIELD , 2011, 1104.5019.

[83]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[84]  K. Nagamine,et al.  Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.

[85]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[86]  A. Dekel,et al.  On the puzzling plateau in the specific star formation rate at z= 2–7 , 2011, 1103.3011.

[87]  S. Driver,et al.  The GALEX–SDSS NUV and FUV flux density and local star formation rate , 2011, 1101.5187.

[88]  C. Conselice,et al.  A deep probe of the galaxy stellar mass functions at z ∼ 1―3 with the GOODS NICMOS Survey , 2011, 1101.2867.

[89]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[90]  Subaru Telescope,et al.  Cosmic Star-Formation Activity at z = 2.2 Probed by H α Emission-Line Galaxies , 2010, 1012.4860.

[91]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[92]  M. Norman,et al.  THE BIRTH OF A GALAXY: PRIMORDIAL METAL ENRICHMENT AND STELLAR POPULATIONS , 2010, 1011.2632.

[93]  Iap,et al.  ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.

[94]  Xiaohui Fan,et al.  THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7 , 2010, 1009.3022.

[95]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[96]  P. Kroupa,et al.  Top-heavy integrated galactic stellar initial mass functions in starbursts , 2010, 1011.3814.

[97]  U. Wyoming,et al.  THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY , 2010, 1011.2759.

[98]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[99]  Garth D. Illingworth,et al.  THE MOST MASSIVE GALAXIES AT 3.0 ⩽ z < 4.0 IN THE NEWFIRM MEDIUM-BAND SURVEY: PROPERTIES AND IMPROVED CONSTRAINTS ON THE STELLAR MASS FUNCTION , 2010, 1009.0269.

[100]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z ∼ 3 , 2010, 1009.0002.

[101]  R. Bouwens,et al.  EVOLUTION OF GALAXY STELLAR MASS FUNCTIONS, MASS DENSITIES, AND MASS-TO-LIGHT RATIOS FROM z ∼ 7 TO z ∼ 4 , 2010, 1008.3901.

[102]  H. Ferguson,et al.  The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.

[103]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[104]  Marcia J. Rieke,et al.  THE EVOLUTION OF THE STAR FORMATION RATE OF GALAXIES AT 0.0 ⩽ z ⩽ 1.2 , 2010, 1006.4359.

[105]  J. Anderson,et al.  TYPE Ibc SUPERNOVAE IN DISTURBED GALAXIES: EVIDENCE FOR A TOP-HEAVY INITIAL MASS FUNCTION , 2010, 1005.0511.

[106]  R. Bouwens,et al.  THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.

[107]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[108]  D. Schaerer,et al.  On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.

[109]  M. Boylan-Kolchin,et al.  The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations , 2010, 1001.2304.

[110]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[111]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[112]  F. Marulli,et al.  Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type , 2009, 0910.1093.

[113]  M. L. N. Ashby,et al.  The evolution of the hard X-ray luminosity function of AGN , 2009, 0910.1141.

[114]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[115]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS , 2009, 0904.0002.

[116]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[117]  J. McBride,et al.  Mass accretion rates and histories of dark matter haloes , 2009, 0902.3659.

[118]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[119]  P. McCarthy,et al.  GLOBAL STAR FORMATION RATE DENSITY OVER 0.7 < z < 1.9 , 2009, 0902.0736.

[120]  David Elbaz,et al.  Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts , 2009, 0901.3783.

[121]  R. Wechsler,et al.  MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS , 2008, 0808.1727.

[122]  S. More,et al.  Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.

[123]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[124]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[125]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[126]  S. Maddox,et al.  The star formation history of K-selected galaxies , 2008, 0808.3139.

[127]  Xiaohu Yang,et al.  THE SUBHALO–SATELLITE CONNECTION AND THE FATE OF DISRUPTED SATELLITE GALAXIES , 2008, 0808.2526.

[128]  R. Cen,et al.  IONIZING PHOTON ESCAPE FRACTIONS FROM HIGH-REDSHIFT DWARF GALAXIES , 2008, 0808.2477.

[129]  M. Scodeggio,et al.  THE DUST-UNBIASED COSMIC STAR-FORMATION HISTORY FROM THE 20 CM VLA-COSMOS SURVEY , 2008, 0808.0493.

[130]  N. Yoshida,et al.  The First Galaxies , 2008, Proceedings of the International Astronomical Union.

[131]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[132]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[133]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[134]  Onsi Fakhouri,et al.  The nearly universal merger rate of dark matter haloes in ΛCDM cosmology , 2007, 0710.4567.

[135]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[136]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[137]  H. Tananbaum,et al.  The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.

[138]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[139]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[140]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[141]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[142]  G. Hasinger,et al.  Relativistic Astrophysics Legacy and Cosmology – Einstein’s , 2007 .

[143]  S. Okamura,et al.  Luminosity Functions of Lyman Break Galaxies at z ~ 4 and z ~ 5 in the Subaru Deep Field , 2006, astro-ph/0608512.

[144]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[145]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[146]  G. Hill,et al.  SPECIFIC STAR FORMATION RATES , 2005, astro-ph/0509059.

[147]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[148]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[149]  K. Rice,et al.  Protostars and Planets V , 2005 .

[150]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[151]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[152]  A. Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2000, astro-ph/0010467.

[153]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[154]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[155]  A. Klypin,et al.  The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes , 1998, astro-ph/9812311.

[156]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[157]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[158]  E. Salpeter The Luminosity function and stellar evolution , 1955 .