Nanomechanics of carbon nanotubes

Some of the most important potential applications of carbon nanotubes are related to their mechanical properties. Stiff sp2 bonds result in a Young’s modulus close to that of diamond, while the relatively weak van der Waals interaction between the graphitic shells acts as a form of lubrication. Previous characterization of the mechanical properties of nanotubes includes a rich variety of experiments involving mechanical deformation of nanotubes using scanning probe microscopes. These results have led to promising prototypes of nanoelectromechanical devices such as high-performance nanomotors, switches and oscillators based on carbon nanotubes.

[1]  Patrick Bernier,et al.  Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. , 2001 .

[2]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[3]  O. L. Blakslee,et al.  Elastic Constants of Compression-Annealed Pyrolytic Graphite , 1970 .

[4]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[5]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[6]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[7]  R. Smalley Crystalline Ropes of Metallic Carbon Nanotubes , 1999 .

[8]  Jeremy A. Walraven,et al.  MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes , 2000 .

[9]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[10]  E. J. Seldin,et al.  Elastic Constants and Electron‐Microscope Observations of Neutron‐Irradiated Compression‐Annealed Pyrolytic and Single‐Crystal Graphite , 1970 .

[11]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[12]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[13]  Andras Kis,et al.  Controlled placement of highly aligned carbon nanotubes for the manufacture of arrays of nanoscale torsional actuators , 2006 .

[14]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[15]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[16]  P. Ajayan,et al.  Direct Synthesis of Long Single-Walled Carbon Nanotube Strands , 2002, Science.

[17]  K. Jensen,et al.  Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. , 2006, Physical review letters.

[18]  A. Zettl,et al.  Localization and nonlinear resistance in telescopically extended nanotubes. , 2004, Physical review letters.

[19]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[20]  H. Postma,et al.  Carbon nanotube linear bearing nanoswitches. , 2006, Nano letters.

[21]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[22]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[23]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[24]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[25]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[26]  Sidney R. Cohen,et al.  On the mechanical behavior of WS2 nanotubes under axial tension and compression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  GuanHua Chen,et al.  Energy dissipation mechanisms in carbon nanotube oscillators. , 2003, Physical review letters.

[28]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[29]  László Forró,et al.  Beyond Gedanken Experiments , 2000, Science.

[30]  K. Jensen,et al.  Tunable nanoresonators constructed from telescoping nanotubes. , 2006, Physical review letters.

[31]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[32]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[33]  Crespi,et al.  Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes , 2000, Physical review letters.

[34]  W Benoit,et al.  Reinforcement of single-walled carbon nanotube bundles by intertube bridging , 2004, Nature materials.

[35]  T. D. Yuzvinsky,et al.  Ultrahigh frequency nanotube resonators. , 2006, Physical review letters.

[36]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[37]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[38]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[39]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[40]  François Béguin,et al.  Catalytically grown carbon nanotubes of small diameter have a high Young's modulus. , 2005, Nano letters.

[41]  T. Fujii,et al.  Micropattern measurement with an atomic force microscope , 1991 .

[42]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[43]  G. Dresselhaus,et al.  Size Effects in Carbon Nanotubes , 1998 .

[44]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[45]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[46]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[47]  Paul Tangney,et al.  Dynamic sliding friction between concentric carbon nanotubes. , 2004, Physical review letters.

[48]  J Servantie,et al.  Methods of calculation of a friction coefficient: application to nanotubes. , 2003, Physical review letters.

[49]  J. Nagy,et al.  Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapour deposition , 2005 .

[50]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[51]  S. Wind,et al.  Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.

[52]  Charlier,et al.  Energetics of multilayered carbon tubules. , 1993, Physical review letters.

[53]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[54]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[55]  W. Curtin,et al.  Pullout forces and friction in multiwall carbon nanotubes , 2004 .

[56]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[57]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[58]  F. A. Johnson Elastic constants. I , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[59]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[60]  Linda S. Schadler,et al.  On the tensile strength distribution of multiwalled carbon nanotubes , 2005 .

[61]  L. Forró NANOTECHNOLOGY: Beyond Gedanken Experiments. , 2000, Science.

[62]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[63]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .