miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis

PIWI-interacting RNA (piRNA) pathways control transposable elements (TEs) and endogenous genes, playing important roles in animal gamete formation. However, the underlying piRNA biogenesis mechanisms remain elusive. Here, we show that endogenous protein coding sequences (CDSs), which are normally used for translation, serve as origins of noncoding piRNA biogenesis in Drosophila melanogaster testes. The product, namely, CDS-piRNAs, formed silencing complexes with Aubergine (Aub) in germ cells. Proximity proteome and functional analyses show that CDS-piRNAs and cluster/TE-piRNAs are distinct species occupying Aub, the former loading selectively relies on chaperone Cyclophilin 40. Moreover, Argonaute 2 (Ago2) and Dicer-2 activities were found critical for CDS-piRNA production. We provide evidence that Ago2-bound short interfering RNAs (siRNAs) and microRNAs (miRNAs) specify precursors to be processed into piRNAs. We further demonstrate that Aub is crucial in spermatid differentiation, regulating chromatins through mRNA cleavage. Collectively, our data illustrate a unique strategy used by male germ line, expanding piRNA repertoire for silencing of endogenous genes during spermatogenesis.

[1]  T. Kai,et al.  The Tudor Domain-Containing Protein, Kotsubu (CG9925), Localizes to the Nuage and Functions in piRNA Biogenesis in D. melanogaster , 2022, Frontiers in Molecular Biosciences.

[2]  M. Ishikawa,et al.  Cooperative recruitment of RDR6 by SGS3 and SDE5 during small interfering RNA amplification in Arabidopsis , 2021, Proceedings of the National Academy of Sciences.

[3]  Keisuke Shoji,et al.  Cell-free reconstitution reveals the molecular mechanisms for the initiation of secondary siRNA biogenesis in plants , 2021, Proceedings of the National Academy of Sciences.

[4]  R. Lehmann,et al.  Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation , 2021, Molecular cell.

[5]  Keisuke Shoji,et al.  Dynamic subcellular compartmentalization ensures fidelity of piRNA biogenesis in silkworms , 2021, EMBO reports.

[6]  A. Aravin,et al.  Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster , 2021, Frontiers in Genetics.

[7]  P. Alexiou,et al.  Modulation of Aub–TDRD interactions elucidates piRNA amplification and germplasm formation , 2020, Life Science Alliance.

[8]  T. Kai,et al.  Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. , 2020, Cell reports.

[9]  J. Dean,et al.  Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA , 2020, bioRxiv.

[10]  M. Simonelig,et al.  Functions of PIWI Proteins in Gene Regulation: New Arrows Added to the piRNA Quiver. , 2020, Trends in genetics : TIG.

[11]  A. Aravin,et al.  piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline , 2020, bioRxiv.

[12]  A. Aravin,et al.  RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility , 2020, bioRxiv.

[13]  B. Meyers,et al.  PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction , 2020, Plant Cell.

[14]  Z. Weng,et al.  The Evolutionarily Conserved piRNA-producing Locus pi6 Is Required for Male Mouse Fertility , 2020, Nature Genetics.

[15]  Xiang-Dong Fu,et al.  A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis , 2019, Cell.

[16]  John K. Kim,et al.  Multigenerational Regulation of the Caenorhabditis elegans Chromatin Landscape by Germline Small RNAs. , 2019, Annual review of genetics.

[17]  G. Hannon,et al.  Specialization of the Drosophila nuclear export family protein Nxf3 for piRNA precursor export , 2019, bioRxiv.

[18]  M. Siomi,et al.  Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis. , 2019, Cell reports.

[19]  A. Nakamura,et al.  Rapid and efficient generation of GFP‐knocked‐in Drosophila by the CRISPR‐Cas9‐mediated genome editing , 2019, Development, growth & differentiation.

[20]  Peter R Andersen,et al.  A Heterochromatin-Specific RNA Export Pathway Facilitates piRNA Production , 2019, Cell.

[21]  A. Aravin,et al.  piRNA silencing contributes to interspecies hybrid sterility and reproductive isolation in Drosophila melanogaster , 2019, Nucleic acids research.

[22]  G. Hannon,et al.  piRNA-Guided Genome Defense: From Biogenesis to Silencing. , 2018, Annual review of genetics.

[23]  Deniz M. Ozata,et al.  PIWI-interacting RNAs: small RNAs with big functions , 2018, Nature Reviews Genetics.

[24]  Z. Weng,et al.  The RNA-binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria , 2018, bioRxiv.

[25]  C. Rathke,et al.  Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster , 2018, PloS one.

[26]  O. Voinnet,et al.  Structural Flexibility Enables Alternative Maturation, ARGONAUTE Sorting and Activities of miR168, a Global Gene Silencing Regulator in Plants. , 2018, Molecular plant.

[27]  N. Perrimon,et al.  Efficient proximity labeling in living cells and organisms with TurboID , 2018, Nature Biotechnology.

[28]  H. Seitz,et al.  Functional lability of RNA-dependent RNA polymerases in animals , 2018, bioRxiv.

[29]  J. Buchner,et al.  The HSP90 chaperone machinery , 2017, Nature Reviews Molecular Cell Biology.

[30]  Stefan L Ameres,et al.  Genetic and mechanistic diversity of piRNA 3' end formation , 2016, Nature.

[31]  T. Kai,et al.  The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila , 2016, RNA.

[32]  Natsuko Izumi,et al.  Identification and Functional Analysis of the Pre-piRNA 3′ Trimmer in Silkworms , 2016, Cell.

[33]  G. Hannon,et al.  Panoramix enforces piRNA-dependent cotranscriptional silencing , 2015, Science.

[34]  Piero Carninci,et al.  Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. , 2015, Molecular cell.

[35]  D. Patel,et al.  Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. , 2015, Molecular cell.

[36]  Na Liu,et al.  Piwi Is a Key Regulator of Both Somatic and Germline Stem Cells in the Drosophila Testis. , 2015, Cell reports.

[37]  Zhiping Weng,et al.  piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production , 2015, Science.

[38]  Molly Hammell,et al.  piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis , 2015, Genes & development.

[39]  Julius Brennecke,et al.  piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis , 2015, Science.

[40]  Hiroshi M Sasaki,et al.  Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex , 2015, Nature.

[41]  Shunmin He,et al.  MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes , 2015, Cell Research.

[42]  E. Lai,et al.  Adaptive regulation of testis gene expression and control of male fertility by the Drosophila hairpin RNA pathway. [Corrected]. , 2015, Molecular cell.

[43]  S. Khochbin,et al.  Genome-scale acetylation-dependent histone eviction during spermatogenesis. , 2014, Journal of molecular biology.

[44]  R. V. van Rij,et al.  The long and short of antiviral defense: small RNA-based immunity in insects. , 2014, Current opinion in virology.

[45]  C. Rathke,et al.  H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat , 2014, Biology Open.

[46]  Yong Li,et al.  Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis , 2014, Cell Research.

[47]  S. Sugano,et al.  Hsp90 facilitates accurate loading of precursor piRNAs into PIWI proteins , 2013, RNA.

[48]  M. Ishikawa,et al.  3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3 , 2013, Proceedings of the National Academy of Sciences.

[49]  Yong Li,et al.  piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. , 2013, Developmental cell.

[50]  Julius Brennecke,et al.  Transcriptional Silencing of Transposons by Piwi and Maelstrom and Its Impact on Chromatin State and Gene Expression , 2012, Cell.

[51]  P. Wang,et al.  Blockade of Pachytene piRNA Biogenesis Reveals a Novel Requirement for Maintaining Post-Meiotic Germline Genome Integrity , 2012, PLoS genetics.

[52]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[53]  T. Kai,et al.  The tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila , 2012, The EMBO journal.

[54]  M. Ishikawa,et al.  Cyclophilin 40 facilitates HSP90‐mediated RISC assembly in plants , 2012, The EMBO journal.

[55]  Ravi Sachidanandam,et al.  Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing , 2011, Nature.

[56]  Z. Weng,et al.  Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. , 2011, Molecular cell.

[57]  T. Mituyama,et al.  Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. , 2010, RNA.

[58]  R. Sachidanandam,et al.  Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. , 2010, RNA.

[59]  M. Siomi,et al.  A direct role for Hsp90 in pre-RISC formation in Drosophila , 2010, Nature Structural &Molecular Biology.

[60]  Tsutomu Suzuki,et al.  Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. , 2010, Molecular cell.

[61]  M. Ishikawa,et al.  In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. , 2010, Molecular cell.

[62]  D. Baulcombe,et al.  22-nucleotide RNAs trigger secondary siRNA biogenesis in plants , 2010, Proceedings of the National Academy of Sciences.

[63]  C. Sullivan,et al.  Unique Functionality of 22 nt miRNAs in Triggering RDR6-Dependent siRNA Biogenesis from Target Transcripts in Arabidopsis , 2010, Nature Structural &Molecular Biology.

[64]  R. Renkawitz-Pohl,et al.  Histone H4 Acetylation is Essential to Proceed from a Histone- to a Protamine-based Chromatin Structure in Spermatid Nuclei of Drosophila melanogaster , 2010, Systems biology in reproductive medicine.

[65]  N. Lau,et al.  A Broadly Conserved Pathway Generates 3′UTR-Directed Primary piRNAs , 2009, Current Biology.

[66]  K. Asai,et al.  A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila , 2009, Nature.

[67]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[68]  Eric C. Lai,et al.  Endogenous small interfering RNAs in animals , 2008, Nature Reviews Molecular Cell Biology.

[69]  T. Härd,et al.  A Potential Role for Drosophila Mucins in Development and Physiology , 2008, PloS one.

[70]  N. Perrimon,et al.  An endogenous small interfering RNA pathway in Drosophila , 2008, Nature.

[71]  D. Bartel,et al.  The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs , 2008, Nature.

[72]  Rod Balhorn,et al.  The protamine family of sperm nuclear proteins , 2007, Genome Biology.

[73]  Ravi Sachidanandam,et al.  Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control , 2007, Science.

[74]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[75]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[76]  P. Macdonald,et al.  Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. , 2001, Development.