Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation

A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter (shallow water limit) or the steepness parameter (deep water limit). Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \cite{matsuno3} and Choi \cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equations with the fully nonlinear shallow water Green-Naghdi equations represents a relevant model for describing ocean wave propagation from deep to shallow waters.

[1]  James M. Witting,et al.  A Unified Model for the Evolution of Nonlinear Water Waves , 1982 .

[2]  V. Lakhan Advances in coastal modeling , 2003 .

[3]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Dominique P. Renouard,et al.  Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle , 1987, Journal of Fluid Mechanics.

[5]  Philippe Guyenne,et al.  Hamiltonian long–wave expansions for water waves over a rough bottom , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[7]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[8]  W. Choi Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth , 1995, Journal of Fluid Mechanics.

[9]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[10]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[11]  T. Benjamin The stability of solitary waves , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  John W. Miles,et al.  Weakly dispersive nonlinear gravity waves , 1985, Journal of Fluid Mechanics.

[13]  Dmitry E. Pelinovsky,et al.  Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Per A. Madsen,et al.  Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves , 1997 .

[15]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[16]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[17]  Philippe Bonneton,et al.  A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis , 2006 .

[18]  Walter Craig,et al.  The modulational regime of three-dimensional water waves and the Davey-Stewartson system , 1997 .

[19]  E. Barthélemy,et al.  Nonlinear Shallow Water Theories for Coastal Waves , 2004 .

[20]  Per A. Madsen,et al.  A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry , 2006 .

[21]  David Lannes,et al.  Large time existence for 3D water-waves and asymptotics , 2007, math/0702015.

[22]  Hamiltonian structure for two‐dimensional hydrodynamics with nonlinear dispersion , 1988 .

[23]  Jean-Claude Saut,et al.  Weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili approximation , 2006 .

[24]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[25]  Walter Craig,et al.  Nonlinear modulation of gravity waves: a rigorous approach , 1992 .

[26]  Min Chen,et al.  Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory , 2002, J. Nonlinear Sci..

[27]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[28]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[29]  Nonlinear evolution of surface gravity waves over an uneven bottom , 1993 .

[30]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[31]  Philippe Bonneton,et al.  A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II : boundary conditions and validation , 2007 .

[32]  Per A. Madsen,et al.  Surf zone dynamics simulated by a Boussinesq type model. Part II: surf beat and swash oscillations for wave groups and irregular waves , 1997 .

[33]  Per A. Madsen,et al.  A REVIEW OF BOUSSINESQ-TYPE EQUATIONS FOR SURFACE GRAVITY WAVES , 1999 .

[34]  T. Y. Wu,et al.  A unified theory for modeling water waves , 2001 .

[35]  P. Liu,et al.  Advances in Coastal and Ocean Engineering , 1999 .

[36]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[37]  Per A. Madsen,et al.  A new approach to high-order Boussinesq models , 1999, Journal of Fluid Mechanics.

[38]  James T. Kirby,et al.  Chapter 1 Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents , 2003 .

[39]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[40]  William C. Webster,et al.  Waves caused by a moving disturbance in a shallow channel of finite width , 1986, Journal of Fluid Mechanics.

[41]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Matsuno Nonlinear evolutions of surface gravity waves on fluid of finite depth. , 1992, Physical review letters.

[43]  Per A. Madsen,et al.  A review of Boussinesq-type equations for gravity waves , 1999 .

[44]  M. W. Dingemans,et al.  Water Wave Propagation Over Uneven Bottoms , 1997 .

[45]  Harry B. Bingham,et al.  A new Boussinesq method for fully nonlinear waves from shallow to deep water , 2002, Journal of Fluid Mechanics.

[46]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[47]  H. Schäffer,et al.  Further enhancements of Boussinesq-type equations , 1995 .

[48]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics , 1991 .

[49]  Thierry Colin,et al.  Long Wave Approximations for Water Waves , 2005 .

[50]  Ralph A. Smith,et al.  An operator expansion formalism for nonlinear surface waves over variable depth , 1998, Journal of Fluid Mechanics.

[51]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[52]  Darryl D. Holm,et al.  Long-time effects of bottom topography in shallow water , 1996 .