Lipophilicity of amyloid β-peptide 12-28 and 25-35 to unravel their ability to promote hydrophobic and electrostatic interactions.

[1]  Alessia Visconti,et al.  Prediction and interpretation of the lipophilicity of small peptides , 2015, Journal of Computer-Aided Molecular Design.

[2]  L. Otvos,et al.  Current challenges in peptide-based drug discovery , 2014, Front. Chem..

[3]  M. Rheinstädter,et al.  The Interaction between Amyloid-β Peptides and Anionic Lipid Membranes Containing Cholesterol and Melatonin , 2014, PloS one.

[4]  Blaine R. Roberts,et al.  Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization , 2013, PeerJ.

[5]  G. Caron,et al.  Molecular interaction fields based descriptors to interpret and compare chromatographic indexes. , 2012, Journal of chromatography. A.

[6]  B. Buszewski,et al.  Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique , 2011, Analytical and Bioanalytical Chemistry.

[7]  Y. Goto,et al.  Hexafluoroisopropanol Induces Amyloid Fibrils of Islet Amyloid Polypeptide by Enhancing Both Hydrophobic and Electrostatic Interactions* , 2011, The Journal of Biological Chemistry.

[8]  S. Mohammed,et al.  Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. , 2011, Analytical chemistry.

[9]  O. Takahashi,et al.  Molecular‐Dynamics Simulations for Amyloid β1–42 Monomer with D‐Aspartic Acid Residues Using Continuous Solvent , 2010, Chemistry & biodiversity.

[10]  John Hardy,et al.  The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal , 2009, Journal of neurochemistry.

[11]  Bernard Testa,et al.  Intramolecular Interactions Encoded in Lipophilicity: Their Nature and Significance , 2008 .

[12]  J. Seelig,et al.  Length dependence of the coil <--> beta-sheet transition in a membrane environment. , 2008, Journal of the American Chemical Society.

[13]  Joan-Emma Shea,et al.  Effects of Solvent on the Structure of the Alzheimer Amyloid-β(25–35) Peptide , 2006 .

[14]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[15]  G. Bouchard,et al.  Liposome/water lipophilicity: Methods, information content, and pharmaceutical applications , 2004, Medicinal research reviews.

[16]  Y. Lyubchenko,et al.  Residues 17–20 and 30–35 of beta‐amyloid play critical roles in aggregation , 2004, Journal of neuroscience research.

[17]  C. Poole,et al.  Separation methods for estimating octanol-water partition coefficients. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[18]  U. Igbavboa,et al.  Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer's disease. , 2003, Biochimica et biophysica acta.

[19]  F. Dayan Octan-1-ol / Water Partition Coefficients of p-benzo-and p-naphthoquinones corrected for pH effect † , 2002 .

[20]  Berkeley California Disclaimer,et al.  University of California , 1886, The American journal of dental science.

[21]  T. Hoffmann,et al.  Peptide therapeutics: current status and future directions. , 2015, Drug discovery today.

[22]  Joan-Emma Shea,et al.  Effects of solvent on the structure of the Alzheimer amyloid-beta(25-35) peptide. , 2006, Biophysical journal.

[23]  With Ammonium Hydroxide , 2004 .

[24]  D. Case,et al.  Theory and applications of the generalized born solvation model in macromolecular simulations , 2000, Biopolymers.

[25]  Bernard Testa,et al.  Octan-1-ol–water partition coefficients of zwitterionic α-amino acids. Determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar components , 1992 .

[26]  Johan F. J. Engbersen,et al.  Addition of cyanide ion to nicotinamide cations in acetonitrile. Formation of non-productive charge-transfer complexes , 1990 .