Application of optimal control to CPMG refocusing pulse design.

We apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence that are robust over a wide range of B(0) and B(1) offsets. We also introduce a model, based on recent progress in the analysis of unitary dynamics in the field of quantum information processing (QIP), that describes the multiple refocusing dynamics of the CPMG sequence as a dephasing Pauli channel. This model provides a compact characterization of the consequences and severity of residual pulse errors. We illustrate the methods by considering a specific example of designing and analyzing broadband OCT refocusing pulses of length 10t(180) that are constrained by the maximum instantaneous pulse power. We show that with this refocusing pulse, the CPMG sequence can refocus over 98% of magnetization for resonance offsets up to 3.2 times the maximum RF amplitude, even in the presence of ±10% RF inhomogeneity.

[1]  M. Hürlimann,et al.  Spin dynamics of Carr-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B(0) and B(1) fields and application to NMR well logging. , 2000, Journal of magnetic resonance.

[2]  E. R. Pinch,et al.  Optimal control and the calculus of variations , 1993 .

[3]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[4]  E. Knill,et al.  Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods , 2008, 0803.1982.

[5]  David G. Cory,et al.  Universal control of nuclear spins via anisotropic hyperfine interactions , 2007 .

[6]  M. Garwood,et al.  Broadband adiabatic refocusing without phase distortion. , 1997, Journal of magnetic resonance.

[7]  Geoffrey Bodenhausen,et al.  Experimental aspects of chirp NMR spectroscopy , 1993 .

[8]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[9]  Chemical‐Shift Concertina , 1969 .

[10]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[11]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[12]  Timothy F. Havel,et al.  Quantum information processing by nuclear magnetic resonance spectroscopy , 2002 .

[13]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[14]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[15]  D. Lidar,et al.  Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences , 2006, quant-ph/0607086.

[16]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[17]  Timothy F. Havel Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups , 2002, quant-ph/0201127.

[18]  Geoffrey Bodenhausen,et al.  Refocusing with chirped pulses for broadband excitation without phase dispersion , 1989 .

[19]  N. Khaneja,et al.  Construction of universal rotations from point-to-point transformations. , 2005, Journal of magnetic resonance.

[20]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[21]  A. Pines,et al.  Approach to High-Resolution ex Situ NMR Spectroscopy , 2001, Science.

[22]  M. G. Prammer,et al.  The CPMG Pulse Sequence in Strong Magnetic Field Gradients with Applications to Oil-Well Logging , 1995 .

[23]  M. Garwood,et al.  A new localization method using an adiabatic pulse, BIR-4. , 1995, Journal of magnetic resonance. Series B.

[24]  David Poulin,et al.  Characterizing the structure of preserved information in quantum processes. , 2008, Physical review letters.

[25]  K. Kraus General state changes in quantum theory , 1971 .

[26]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[27]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[28]  Hailu,et al.  Nuclear magnetic resonance in inhomogeneous magnetic fields , 2000, Journal of magnetic resonance.

[29]  Ray Freeman Shaped Radiofrequency Pulses in High Resolution NMR , 1998 .

[30]  D G Cory,et al.  Principles of control for decoherence-free subsystems. , 2006, The Journal of chemical physics.

[31]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[32]  Ray Freeman,et al.  Adiabatic pulses for wideband inversion and broadband decoupling , 1995 .

[33]  G. Siouris,et al.  Optimum Systems Control , 1979, IEEE Transactions on Systems, Man and Cybernetics.

[34]  Timothy F. Havel,et al.  Robust control of quantum information , 2003, quant-ph/0307062.

[35]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[36]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[37]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[38]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[39]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[40]  Burkhard Luy,et al.  Optimal control design of constant amplitude phase-modulated pulses: application to calibration-free broadband excitation. , 2006, Journal of magnetic resonance.

[41]  A. J. Shaka,et al.  Improved Broadband Inversion Performance for NMR in Liquids , 2001 .

[42]  Thomas H. Mareci,et al.  Selective inversion radiofrequency pulses by optimal control , 1986 .

[43]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[44]  Herschel Rabitz,et al.  Quantum control landscapes , 2007, 0710.0684.

[45]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[46]  M. Hürlimann Carr-Purcell sequences with composite pulses. , 2001, Journal of magnetic resonance.

[47]  J. Perlo,et al.  High-Resolution NMR Spectroscopy with a Portable Single-Sided Sensor , 2005, Science.

[48]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[49]  John S. Waugh,et al.  Theory of broadband spin decoupling , 1982 .

[50]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[51]  G. Bodenhausen,et al.  Broadband decoupling in NMR with frequency-modulated "chirp" pulses , 1995 .

[52]  Burkhard Luy,et al.  Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude. , 2004, Journal of magnetic resonance.

[53]  Pines,et al.  Broadband and adiabatic inversion of a two-level system by phase-modulated pulses. , 1985, Physical review. A, General physics.

[54]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.