A Robust Fingerprint Indexing Scheme Using Minutia Neighborhood Structure and Low-Order Delaunay Triangles

Fingerprint indexing is a key technique in automatic fingerprint identification systems (AFIS). However, handling fingerprint distortion is still a problem. This paper concentrates on a more accurate fingerprint indexing algorithm that efficiently retrieves the top N possible matching candidates from a huge database. To this end, we design a novel feature based on minutia neighborhood structure (we call this minutia detail and it contains richer minutia information) and a more stable triangulation algorithm (low-order Delaunay triangles, consisting of order 0 and 1 Delaunay triangles), which are both insensitive to fingerprint distortion. The indexing features include minutia detail and attributes of low-order Delaunay triangle (its handedness, angles, maximum edge, and related angles between orientation field and edges). Experiments on databases FVC2002 and FVC2004 show that the proposed algorithm considerably narrows down the search space in fingerprint databases and is stable for various fingerprints. We also compared it with other indexing approaches, and the results show our algorithm has better performance, especially on fingerprints with distortion.

[1]  Adnan Amin,et al.  Fingerprint classification: a review , 2004, Pattern Analysis and Applications.

[2]  Anil K. Jain,et al.  Automated Fingerprint Identification and Imaging Systems , 2001 .

[3]  Manuel Abellanas,et al.  Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..

[4]  Alessandra Lumini,et al.  Fingerprint Classification by Directional Image Partitioning , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Bir Bhanu,et al.  Fingerprint Indexing Based on Novel Features of Minutiae Triplets , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Prosenjit Bose,et al.  On properties of higher-order Delaunay graphs with applications , 2005, EuroCG.

[7]  Yilong Yin,et al.  A Fingerprint Matching Algorithm Based On Delaunay Triangulation Net , 2005, The Fifth International Conference on Computer and Information Technology (CIT'05).

[8]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[9]  A. Ganson Fingerprint Classification , 1970, Nature.

[10]  Abbas Edalat,et al.  Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.

[11]  Robert S. Germain,et al.  Fingerprint matching using transformation parameter clustering , 1997 .

[12]  Xuefeng Liang Fingerprint image analysis using computational geometric techniques , 2006 .

[13]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[14]  George Bebis,et al.  Fingerprint identification using Delaunay triangulation , 1999, Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No.PR00446).

[15]  Sabih H. Gerez,et al.  Indexing Fingerprint Databases Based on Multiple Features , 2001 .

[16]  Joachim Gudmundsson,et al.  Constrained higher order Delaunay triangulations , 2005, Comput. Geom..

[17]  Maarten Löffler,et al.  Minimizing local minima in terrains with higher-order Delaunay triangulations , 2005, EuroCG.

[18]  Tetsuo Asano,et al.  A Combinatorial Approach to Fingerprint Binarization and Minutiae Extraction Using Euclidean Distance Transform , 2007, Int. J. Pattern Recognit. Artif. Intell..

[19]  Joachim Gudmundsson,et al.  Higher order Delaunay triangulations , 2000, Comput. Geom..

[20]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[22]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[23]  Albert Niel,et al.  A Fingerprint Matching Using Minutiae Triangulation , 2004, ICBA.