The Search Efficiency of Theorem Proving Strategies

We analyze the search efficiency of a number of common refutational theorem proving strategies for first-order logic. We show that most of them produce search spaces of exponential size even on simple sets of clauses, or else are not sensitive to the goal. We also discuss clause linking, a new procedure that uses a reduction to propositional calculus, and show that it, together with methods that cache subgoals, have behavior that is more favorable in some respects.

[1]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[2]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[3]  Tanel Tammet Using Resolution for Deciding Solvable Classes and Building Finite Models , 1991, Baltic Computer Science.

[4]  Michaël Rusinowitch,et al.  Proving refutational completeness of theorem-proving strategies: the transfinite semantic tree method , 1991, JACM.

[5]  James R. Slagle,et al.  Automatic Theorem Proving With Renamable and Semantic Resolution , 1967, JACM.

[6]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[7]  Tanel Tammet The resolution program, able to decide some solvable classes , 1988, Conference on Computer Logic.

[8]  Donald W. Loveland,et al.  A Simplified Format for the Model Elimination Theorem-Proving Procedure , 1969, J. ACM.

[9]  Alan Bundy,et al.  The Computer Modelling of Mathematical Reasoning , 1983 .

[10]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[11]  Mabry Tyson,et al.  An Analysis of Consecutively Bounded Depth-First Search with Applications in Automated Deduction , 1985, IJCAI.

[12]  N. K. Zamov,et al.  Maslov's Inverse Method and Decidable Classes , 1989, Ann. Pure Appl. Log..

[13]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[14]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[15]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[16]  David A. Plaisted,et al.  A Simplified Problem Reduction Format , 1982, Artif. Intell..

[17]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[18]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[19]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[20]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[21]  Harald Ganzinger,et al.  On Restrictions of Ordered Paramodulation with Simplification , 1990, CADE.

[22]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[23]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[24]  Reinhold Letz On the Polynomial Transparency of Resolution , 1993, IJCAI.

[25]  Mark E. Stickel,et al.  Caching and Lemmaizing in Model Elimination Theorem Provers , 1992, CADE.