Quantum-enhanced tomography of unitary processes

A fundamental task in photonics is to characterize an unknown optical process, defined by properties such as birefringence, spectral response, thickness and flatness. Among many ways to achieve this, single-photon probes can be used in a method called quantum process tomography (QPT). However, the precision of QPT is limited by unavoidable shot noise when implemented using single-photon probes or laser light. In situations where measurement resources are limited, for example, where the process (sample) to be probed is very delicate such that the exposure to light has a detrimental effect on the sample, it becomes essential to overcome this precision limit. Here we devise a scheme for process tomography with a quantum-enhanced precision by drawing upon techniques from quantum metrology. We implement a proof-of-principle experiment to demonstrate this scheme—four-photon quantum states are used to probe an unknown arbitrary unitary process realized with an arbitrary polarization rotation. Our results show a substantial reduction of statistical fluctuations compared to traditional QPT methods—in the ideal case, one four-photon probe state yields the same amount of statistical information as twelve single probe photons.

[1]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[2]  S. Knysh,et al.  Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise , 2013, 1307.0470.

[3]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[4]  Aephraim M. Steinberg,et al.  Adaptive quantum state tomography improves accuracy quadratically. , 2013, Physical review letters.

[5]  C. Vitelli,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[6]  Nicolò Spagnolo,et al.  Quantum interferometry with three-dimensional geometry , 2012, Scientific Reports.

[7]  L. Zhang,et al.  Direct and full-scale experimental verifications towards ground–satellite quantum key distribution , 2012, Nature Photonics.

[8]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[9]  J. O'Brien,et al.  Super-stable tomography of any linear optical device , 2012, 1208.2868.

[10]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[11]  Marco Barbieri,et al.  Multiparameter quantum metrology , 2012 .

[12]  Takanori Sugiyama,et al.  Adaptive experimental design for one-qubit state estimation with finite data based on a statistical update criterion , 2012, 1203.3391.

[13]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[14]  G. S. Agarwal,et al.  True photocounting statistics of multiple on-off detectors , 2012, 1202.5106.

[15]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[16]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[17]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[19]  Brian J. Smith,et al.  Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.

[20]  M. Mohseni,et al.  Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy , 2010, Proceedings of the National Academy of Sciences.

[21]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[22]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[23]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[24]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[25]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[26]  J. O'Brien Optical Quantum Computing , 2007, Science.

[27]  M. Ying,et al.  Parameter Estimation of Quantum Channels , 2006, IEEE Transactions on Information Theory.

[28]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[29]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[30]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[31]  J. Kahn Fast rate estimation of a unitary operation in SU(d) , 2006, quant-ph/0603115.

[32]  J. Wrachtrup,et al.  Quantum process tomography and Linblad estimation of a solid-state qubit , 2006, quant-ph/0601167.

[33]  M. Ballester Optimal estimation of SU(d) using exact and approximate 2-designs , 2005, quant-ph/0507073.

[34]  M. Hayashi,et al.  Parallel treatment of estimation of SU(2) and phase estimation , 2004, Physics Letters A.

[35]  O. Pfister,et al.  Sub-shot-noise heterodyne polarimetry. , 2004, Optics letters.

[36]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[37]  Andrew G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[38]  F. Martini,et al.  Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single-qubit device , 2002, quant-ph/0210210.

[39]  Kazuo Nakamura,et al.  Experimental investigation of pulsed entangled photons and photonic quantum channels , 2002, SPIE/COS Photonics Asia.

[40]  Andrew M. Childs,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[41]  G. Vidal,et al.  Optimal estimation of quantum dynamics , 2000, quant-ph/0012015.

[42]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[43]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[44]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[45]  R. Simon,et al.  Minimal three-component SU(2) gadget for polarization optics , 1990 .

[46]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[47]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .