An efficient 2D deformable objects detection and location algorithm

Abstract This paper presents a complete method for the automatic detection and location of two-dimensional objects even in the presence of noise, occlusion, cluttering and/or deformations. This method is based on shape information extracted from the edges gradient and only needs a template of the object to be located. A new Generalized Hough Transform is proposed to automatically locate rigid objects in the presence of noise, occlusion and/or cluttering. A Bayesian scheme uses this rigid objects location algorithm to obtain the deformation of the object. The whole method is invariant to rotation, scale, displacement and minor deformations. Several examples with real images are presented to show the validity of the method.

[1]  Wen-Hsiang Tsai,et al.  Fast generalized Hough transform , 1990, Pattern Recognit. Lett..

[2]  Márk Jelasity,et al.  Two Approaches for Parallelizing the UEGO Algorithm , 2001 .

[3]  D. Kendall The diffusion of shape , 1977, Advances in Applied Probability.

[4]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[5]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[6]  C W PaoDerek,et al.  Shapes Recognition Using the Straight Line Hough Transform , 1992 .

[7]  Hon Fung Li,et al.  Shapes Recognition Using the Straight Line Hough Transform: Theory and Generalization , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Bernard Widrow,et al.  The "Rubber-Mask" Technique I. Pattern Measurement and Analysis , 1973 .

[9]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[10]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[11]  K JainAnil,et al.  Deformable template models , 1998 .

[12]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[13]  José M. N. Leitão,et al.  Unsupervised contour representation and estimation using B-splines and a minimum description length criterion , 2000, IEEE Trans. Image Process..

[14]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[15]  Dit-Yan Yeung,et al.  On deformable models for visual pattern recognition , 2002, Pattern Recognit..

[16]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[17]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[18]  Fang-Hsuan Cheng,et al.  Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes , 1997, Pattern Recognit..

[19]  Kuo-Chin Fan,et al.  Image Registration Using a New Edge-Based Approach , 1997, Comput. Vis. Image Underst..

[20]  Emilio L. Zapata,et al.  Bidimensional shape detection using an invariant approach , 1999, Pattern Recognit..

[21]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[25]  Peter Kwong-Shun Tam,et al.  Modification of hough transform for object recognition using a 2-dimensional array , 1995, Pattern Recognit..

[26]  Wan-Chi Siu,et al.  A New Generalized Hough Transform for the Detection of Irregular Objects , 1995, J. Vis. Commun. Image Represent..

[27]  Ulf Grenander,et al.  General Pattern Theory: A Mathematical Study of Regular Structures , 1993 .

[28]  H. F. Li,et al.  Detecting parameteric curves using the straight line Hough transform , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[29]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..