A triangular element based on Reissner‐Mindlin plate theory

A new triangular plate blending element based on the Reissner-Mindlin theory is developed through a mixed formulation emanating from the Hu-Washizu variational principle. A main feature of the formulation is the use of a linear transverse shear interpolation scheme with discrete constraint conditions on the edges

[1]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[2]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[3]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[4]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[5]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[6]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[7]  E. Hinton,et al.  A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .

[8]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[9]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[10]  Douglas N. Arnold,et al.  A Uniformly Accurate Finite Element Method for Mindlin-Reissner Plate , 1987 .

[11]  M. Crisfield A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .

[12]  O. C. Zienkiewicz,et al.  Three‐field mixed approximation and the plate bending problem , 1987 .

[13]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[14]  Fuh-Gwo Yuan,et al.  A cubic triangular finite element for flat plates with shear , 1989 .

[15]  Robert L. Taylor,et al.  The patch test for mixed formulations , 1986 .

[16]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .