Embeddings of homology equivalent manifolds with boundary

Abstract We prove a theorem on equivariant maps implying the following two corollaries: (1) Let N and M be compact orientable n -manifolds with boundaries such that M ⊂ N , the inclusion M → N induces an isomorphism in integral cohomology, both M and N have ( n − d − 1 ) -dimensional spines and m ⩾ max { n + 3 , 3 n + 2 − d 2 } . Then the restriction-induced map Emb m ( N ) → Emb m ( M ) is bijective. Here Emb m ( X ) is the set of embeddings X → R m up to isotopy (in the PL or smooth category). (2) For a 3-manifold N with boundary whose integral homology groups are trivial and such that N ≇ D 3 (or for its special 2-spine N ) there exists an equivariant map N ˜ → S 2 , although N does not embed into R 3 . The second corollary completes the answer to the following question: for which pairs ( m , n ) for each n -polyhedron N the existence of an equivariant map N ˜ → S m − 1 implies embeddability of N into R m ? An answer was known for each pair ( m , n ) except ( 3 , 3 ) and ( 3 , 2 ) .

[1]  B. G. Casler An imbedding theorem for connected 3-manifolds with boundary , 1965 .

[2]  E. C. Zeeman,et al.  A proof of the comparison theorem for spectral sequences , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Jerrold Siegel Higher Order Cohomology Operations in Local Coefficient Theory , 1967 .

[4]  S. Eilenberg,et al.  Homological Algebra (PMS-19) , 1956 .

[5]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[6]  C. Weber Plongements de polyèdres dans le domaine métastable , 1967 .

[7]  P. E. Conner,et al.  Fixed point free involutions and equivariant maps , 1960 .

[8]  R. Choukri,et al.  On the sheaf theory , 2006 .

[9]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[10]  Jack Segal,et al.  Quasi embeddings and embeddings of polyhedra in Rm , 1992 .

[11]  Dušan Repovš,et al.  New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[12]  Dušan D. Repovš,et al.  Новые результаты о вложениях полиэдров и многообразий в евклидовы пространства@@@New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[13]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in $ \Bbb {R}^m $ , 1997 .

[14]  James W. Vick,et al.  Homology Theory: An Introduction to Algebraic Topology , 1973 .

[15]  M. Scharlemann Isotopy and Cobordism of Homology Spheres in Spheres , 1977 .

[16]  A. Skopenkov,et al.  On the deleted product criterion for embeddability in $\mathbb R^m$ , 1998 .

[17]  Jack Segal,et al.  Embeddings of polyhedra in Rm and the deleted product obstruction , 1998 .

[18]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[19]  Michael H. Freedman,et al.  Van Kampen’s embedding Obstruction is incomplete for $2$-Complexes in $\rz^{4}$ , 1994 .

[20]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in Rm , 1998 .

[21]  A. Haefliger,et al.  Immersions in the stable range , 1962 .

[22]  A. Haefliger,et al.  Plongements différentiables dans le domaine stable , 1962 .

[23]  Masahisa Adachi,et al.  Embeddings and immersions , 1993 .

[24]  A. Skopenkov,et al.  On the Haefliger-Hirsch-Wu invariants for embeddings and immersions , 2002 .

[25]  Jack Segal,et al.  $\epsilon $-mappings and generalized manifolds. , 1967 .