Variability in PET quantitation within a multicenter consortium.

PURPOSE The purpose of this study was to evaluate the variability in quantitation of positron emission tomography (PET) data acquired within the context of a multicenter consortium. METHODS PET quantitation phantoms designed by American Association of Physicists in Medicine/ Society of Nuclear Medicine Task Group 145 were sent to the ten member sites of the Pediatric Brain Tumor Consortium (PBTC), a NIH-funded research consortium investigating the biology and therapies for brain tumors in children. The phantoms were water-filled cylinders (18.6 cm inside height and 20.4 cm inside diameter) based on the standard ACR phantom with four small, "hot" cylinders of varying diameters (8, 12, 16, 25 mm, all with 38 mm height), consisting of an equilibrium mixture of 68Ge/68Ga in an epoxy matrix. At each site, the operator added the appropriate amount of 18F to the water in the background in order to attain a feature-to-background ratio of roughly 4:1. The phantom was imaged and reconstructed as if it were a brain PET scan for the PBTC. An approximately 12 mm circular region of interest (ROI) was placed over each feature and in a central area in the background. The mean and maximum pixel values for each ROI were requested from local sites in units of activity concentration (Bq/ml) and the standard uptake value (SUV) (g/mL) based on bodyweight. The activity concentration was normalized by the decay-corrected known activity concentration for the features, and reported as the absolute recovery coefficient (RC). In addition, central analyses were performed by two observers RESULTS The ten sites successfully imaged the phantom within 5 months and submitted the quantitative results and the phantom image data to the PBTC Operations and Biostatistics Center. The local site-based and central analyses yielded similar mean values for RC. Local site-based SUV measurements of the hot cylindrical features yielded greater variability than central analysis (COV range of 29.9%-42.8% compared to 7.7%-23.2%). Correcting for miscalculations in the local site reported SUVs substantially reduced the variation to levels similar to the central analysis (COV range of 8.8%-18.4%) and also led to the local sites providing a similar mean of the SUV values to those from the central analysis. In the central analysis, the use of mean SUV in place of maximum SUV for an ROI of fixed size substantially reduced the variation in the SUV values (COV ranges of 7.7%-11.3% vs. 9.3%-23.2%). CONCLUSIONS Based on this investigation, a SUV variability in the range of 10%-25% due solely to instrument and analysis factors can be expected in the context of a multicenter consortium if a central reading is used and quality assurance and quality control procedures are followed. The overall SUV variability can be expected to be larger than this due to biological and protocol factors.

[1]  Eric J. W. Visser,et al.  Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[2]  Ram D. Sriram,et al.  Imaging as a Biomarker: Standards for Change Measurements in Therapy workshop summary. , 2008, Academic radiology.

[3]  K. Murase,et al.  Variability of lesion detectability and standardized uptake value according to the acquisition procedure and reconstruction among five PET scanners , 2008, Annals of nuclear medicine.

[4]  R. Wahl,et al.  From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors , 2009, Journal of Nuclear Medicine.

[5]  R. Boellaard,et al.  Repeatability of 18F-FDG PET in a Multicenter Phase I Study of Patients with Advanced Gastrointestinal Malignancies , 2009, Journal of Nuclear Medicine.

[6]  Geoffrey McLennan,et al.  PET/CT Assessment of Response to Therapy: Tumor Change Measurement, Truth Data, and Error. , 2009, Translational oncology.

[7]  R. Boellaard Standards for PET Image Acquisition and Quantitative Data Analysis , 2009, Journal of Nuclear Medicine.

[8]  I. Buvat,et al.  Partial-Volume Effect in PET Tumor Imaging* , 2007, Journal of Nuclear Medicine.

[9]  Joel S. Karp,et al.  Multi-center comparison of a PET/CT calibration phantom for imaging trials , 2008 .

[10]  Jeanne Kowalski,et al.  Assessment of Interobserver Reproducibility in Quantitative 18F-FDG PET and CT Measurements of Tumor Response to Therapy , 2009, Journal of Nuclear Medicine.

[11]  Klemens Scheidhauer,et al.  Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  W. Oyen,et al.  FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[13]  R. Boellaard,et al.  Interim positron emission tomography scan in multi-center studies: optimization of visual and quantitative assessments , 2009, Leukemia & lymphoma.

[14]  Joel Karp,et al.  Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  S. Treves,et al.  The Neuroimaging Center of the Pediatric Brain Tumor Consortium-collaborative neuroimaging in pediatric brain tumor research: a work in progress. , 2007, AJNR. American journal of neuroradiology.

[16]  C. MacFarlane,et al.  ACR accreditation of nuclear medicine and PET imaging departments. , 2006, Journal of nuclear medicine technology.

[17]  K. Herholz,et al.  Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. , 1999, European journal of cancer.

[18]  Joel S. Karp,et al.  Qualification of PET Scanners for Use in Multicenter Cancer Clinical Trials: The American College of Radiology Imaging Network Experience , 2009, Journal of Nuclear Medicine.

[19]  D. Mankoff,et al.  Reproducibility of quantifying tracer uptake with PET/CT for evaluation of response to therapy , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[20]  W. Oyen,et al.  The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials , 2008, European Journal of Nuclear Medicine and Molecular Imaging.