On the Standard Model prediction for $\mathcal{B}(B_{s,d} \to \mu^{+} \mu^{-})$

The decay Bs→μ+μ− is one of the milestones of the flavor program at the LHC. We reappraise its Standard Model prediction. First, by analyzing the theoretical rate in the light of its main parametric dependence, we highlight the importance of a complete evaluation of higher-order electroweak corrections, at present known only in the large-mt limit, and leaving sizable dependence on the definition of electroweak parameters. Using insights from a complete calculation of such corrections for $K\to\pi\nu\bar{\nu}$ decays, we find a scheme in which NLO electroweak corrections are likely to be negligible. Second, we address the issue of the correspondence between the initial and the final state detected by the experiments, and those used in the theoretical prediction. Particular attention is devoted to the effect of the soft radiation, which has not been discussed for this mode in the previous literature, and that can lead to O(10 %) corrections to the decay rate. The “non-radiative” branching ratio (which is equivalent to the branching ratio fully inclusive of bremsstrahlung radiation) is estimated to be (3.23±0.27)×10−9 for the flavor eigenstate, with the main uncertainty resulting from the value of $f_{B_{s}}$, followed by the uncertainty due to higher order electroweak corrections. Applying the same strategy to Bd→μ+μ−, we find for its non-radiative branching ratio (1.07±0.10)×10−10.

[1]  C. Lim,et al.  Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes KL→µµ̅, K+→π+νν̅ and K0↔K̅0 , 1981 .

[2]  A. Vicerè,et al.  Radiative correction effects of a very heavy top , 1992, hep-ph/9205238.

[3]  A. Buras,et al.  QCD corrections to rare K- and B-decays for arbitrary top quark mass☆ , 1993 .

[4]  S. Weinberg Infrared photons and gravitons , 1965 .

[5]  R. Fleischer,et al.  Probing New Physics via the $B^0_s\to \mu^+\mu^-$ Effective Lifetime , 2012, 1204.1737.

[6]  S. Bethke EPJ manuscript No. (will be inserted by the editor) The 2009 World Average of αs , 2022 .

[7]  F. Low Bremsstrahlung of very low-energy quanta in elementary particle collisions , 1958 .

[8]  M. Misiak,et al.  QCD corrections to FCNC decays mediated by Z penguins and W boxes , 1999, hep-ph/9901278.

[9]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[10]  Martin Gorbahn,et al.  Two-Loop Electroweak Corrections for the K -> pi nu anti-nu Decays , 2010, 1009.0947.

[11]  R. Fleischer,et al.  Branching ratio measurements of $B_s$ decays , 2012, 1204.1735.

[12]  Mikolaj Misiak Rare B-Meson Decays , 2011, 1112.5978.

[13]  C. Davies Standard Model Heavy Flavor physics on the Lattice , 2012, 1203.3862.

[14]  A. Buras,et al.  Weak decays beyond leading logarithms , 1995, hep-ph/9512380.

[15]  A. Buras,et al.  BSM MODELS FACING THE RECENT LHCb DATA: A FIRST LOOK , 2012, 1204.5064.

[16]  P. Barria,et al.  Search for Bs → µ + µ − and Bd → µ + µ − Decays with CDF II , 2011 .

[17]  A. Kronfeld,et al.  Neutral $B$ mixing from 2+1 flavor lattice-QCD: the Standard Model and beyond , 2011 .

[18]  M. Steinhauser,et al.  RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000 .

[19]  A. Buras,et al.  The rare decays K → πνν−, B → Xνν− and B → l+l−: an update , 1999 .

[20]  A. Buras Relations between ΔMs,d and Bs,d→μμ̄ in models with minimal flavour violation , 2003, hep-ph/0303060.

[21]  R. Illingworth,et al.  Combination of the Top-quark Mass Measurements from the Tevatron Collider (cdf and D0 Collaborations , 2022 .

[22]  D. Yennie,et al.  The infrared divergence phenomena and high-energy processes , 1961 .

[23]  C. DeTar,et al.  $B$- and $D$-meson decay constants from three-flavor lattice QCD , 2011, 1112.3051.

[24]  A. Buras,et al.  QCD corrections to the dZ vertex for arbitrary top quark mass , 1993 .

[25]  P. Janot First-order QED and QCD radiative corrections to higgs decay into massive fermions , 1989 .

[26]  M. Kreps,et al.  Strong Constraints on the Rare Decays B-s(0) -> mu(+)mu(-) and B-0 -> mu(+)mu(-) , 2012, 1203.4493.

[27]  E. Lunghi,et al.  Lattice QCD Inputs to the CKM Unitarity Triangle Analysis , 2009, 0910.2928.

[28]  Andrzej J. Buras,et al.  The Rare Decays $K\to\pi\nu\bar\nu$, $B\to X\nu\bar\nu$ and $B\to l^+l^-$ -- An Update , 1998 .

[29]  C. Michael,et al.  Lattice QCD determination of mb, fB and fBs with twisted mass Wilson fermions , 2011, 1107.1441.

[30]  C. Davies,et al.  High-precision f B s and heavy quark effective theory from relativistic lattice QCD , 2011, 1110.4510.

[31]  J. T. Childers,et al.  Search for the decay Bs0→μ+μ- with the ATLAS detector , 2012 .

[32]  V. M. Ghete,et al.  Search for $B^0_s \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ decays , 2012 .

[33]  J. Shigemitsu,et al.  Neutral B Meson Mixing in Unquenched Lattice QCD , 2009, 0902.1815.

[34]  A. Vicerè,et al.  Two loop heavy top effects in the Standard Model , 1993 .

[35]  B. Kniehl,et al.  Scheme and scale dependences of leading electroweak corrections , 1996 .

[36]  Fleischer,et al.  Two-loop large top mass corrections to electroweak parameters: Analytic results valid for arbitrary Higgs boson mass. , 1995, Physical review. D, Particles and fields.

[37]  G. Isidori Soft-photon corrections in multi-body meson decays , 2007, 0709.2439.

[38]  R. Horgan,et al.  The $B$ and $B_s$ Meson Decay Constants from Lattice QCD , 2012, 1202.4914.

[39]  E. Lunghi,et al.  Electromagnetic logarithms in B¯→Xsℓ+ℓ− , 2005, hep-ph/0512066.

[40]  J. Bulava,et al.  M_b and f_B from non-perturbatively renormalized HQET with Nf=2 light quarks , 2011, 1112.6175.