A Continuous Approach to Discrete Ordering on S2

We consider the classical problem to find optimal distributions of interacting particles on a sphere by solving an evolution problem for a particle density. The higher order surface partial differential equation is an approximation of a surface dynamic density functional theory. We motivate the approach phenomenologically and sketch a derivation of the model starting from an interatomic potential. Different numerical approaches are discussed to solve the evolution problem: (a) an implicit approach to describe the surface using a phase-field description, (b) a parametric finite element approach, and (c) a spectral method based on nonequispaced fast Fourier transforms on the sphere. Results for computed minimal energy configurations are discussed for various particle numbers and are compared with known rigorous asymptotic results. Furthermore extensions to other more complex and evolving surfaces are mentioned.

[1]  D A Weitz,et al.  Grain Boundary Scars and Spherical Crystallography , 2003, Science.

[2]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[3]  M. Grant,et al.  Phase-field crystal modeling and classical density functional theory of freezing , 2007 .

[4]  Axel Voigt,et al.  Hybrid parallelization of an adaptive finite element code , 2010, Kybernetika.

[5]  Luca Giomi,et al.  Two-dimensional matter: order, curvature and defects , 2008, 0812.3064.

[6]  Axel Voigt,et al.  A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE. , 2009, Communications in mathematical sciences.

[7]  Pedro Tarazona,et al.  Dynamic density functional theory of fluids , 1999 .

[8]  T. Lubensky,et al.  Surfactant-mediated two-dimensional crystallization of colloidal crystals , 1999, Science.

[9]  Axel Voigt,et al.  Geometric Evolution Laws for Thin Crystalline Films: Modeling and Numerics , 2009 .

[10]  T. Erber,et al.  Complex systems: Equilibrium configurations of N equal charges on a sphere (2 <= N <= 112) , 1995 .

[11]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[12]  A. Karma,et al.  Phase-field crystal modeling of equilibrium bcc-liquid interfaces , 2007, 0706.3675.

[13]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[14]  T. Erber,et al.  Equilibrium configurations of N equal charges on a sphere , 1991 .

[15]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[16]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[17]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[18]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[19]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[20]  Axel Voigt,et al.  A diffuse-interface approximation for surface diffusion including adatoms , 2007 .

[21]  Hartmut Löwen,et al.  Derivation of the phase-field-crystal model for colloidal solidification. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[23]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[24]  Randall J. LeVeque,et al.  Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..

[25]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[26]  Martin Grant,et al.  Modeling elasticity in crystal growth. , 2001, Physical review letters.

[27]  David Reguera,et al.  Mechanical properties of viral capsids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  I. Pagonabarraga,et al.  Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels , 2005, Science.

[29]  T. Ala‐Nissila,et al.  Thermodynamics of bcc metals in phase-field-crystal models. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Axel Voigt,et al.  Nucleation and growth by a phase field crystal (PFC) model , 2007 .

[31]  W. Gelbart,et al.  Origin of icosahedral symmetry in viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  David R Nelson,et al.  Virus shapes and buckling transitions in spherical shells. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Axel Voigt,et al.  AMDiS: adaptive multidimensional simulations , 2007 .

[34]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[35]  David R. Nelson,et al.  Interacting topological defects on frozen topographies , 1999, cond-mat/9911379.

[36]  Daniel Potts,et al.  Fast evaluation of quadrature formulae on the sphere , 2008, Math. Comput..

[37]  A. Archer,et al.  Dynamical density functional theory and its application to spinodal decomposition. , 2004, The Journal of chemical physics.

[38]  Stefan Kunis,et al.  On the computation of nonnegative quadrature weights on the sphere , 2009 .

[39]  Axel Voigt,et al.  A multigrid finite element method for reaction-diffusion systems on surfaces , 2010, Comput. Vis. Sci..

[40]  Axel Voigt,et al.  Particles on curved surfaces: a dynamic approach by a phase-field-crystal model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S. Smale Mathematical problems for the next century , 1998 .

[42]  A. R. Bausch,et al.  Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles , 2002, Science.

[43]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[44]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[45]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  M. Yussouff,et al.  First-principles order-parameter theory of freezing , 1979 .

[47]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[48]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..