Recent Advances in Raman Analysis of Plants: Alkaloids, Carotenoids, and Polyacetylenes

This paper demonstrates the special potential of Raman spectroscopy for the study of selected plant metabolites. Carotenoids, which are beneficial components in fruits and vegetables, have been shown to be a significant factor in lowering the risk of various types of cancer and ischemic heart diseases. On the other hand, alkaloids may have various effects on human health, e.g. caffeine is a mild stimulant of the central nervous system and as a result it can influence human behaviour. Polyacetylenes are highly cytotoxic against numerous cancer cell lines and demonstrate antifungal, anti-inflammatory and anti-platelet-aggregatory properties. In most cases, vibrational measurements can be performed directly on plant tissues as well as on fractions isolated from the plant material by hydro-distillation or solvent extraction. Raman spectroscopy techniques allow obtaining spectra which present some characteristic key bands of individual components. Based on such markers related to individual plant substances, spectroscopic analyses in principle allow the discrimination of different species, and even chemotypes among the same species. Moreover, Raman microspectroscopy provides 2- and 3-dimensional images of the investigated plant samples. These maps can be directly compared to the corresponding visual images obtained from a light microscope and offer additional detailed information regarding the local distribution of specific compounds in the surface layers of the analyzed plant tissue.

[1]  D. Barnes,et al.  Polyacetylene diversity and bioactivity in orange market and locally grown colored carrots (Daucus carota L.). , 2009, Journal of agricultural and food chemistry.

[2]  H. Edwards,et al.  Analytical Raman spectroscopic study of cacao seeds and their chemical extracts , 2005 .

[3]  Y. L. Lin,et al.  Inducible nitric oxide synthase inhibitors from Saposhnikovia divaricata and Panax quinquefolium. , 2000, Planta medica.

[4]  J. Even,et al.  Dynamical study by Raman scattering of the ferroelectric phase transition of the disubstituted diacetylene 1,6-bis(2,4-dinitrophenoxy)-2,4-hexadiyne (DNP) , 1994 .

[5]  T. Hofmann,et al.  Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota L.) and carrot puree. , 2003, Journal of agricultural and food chemistry.

[6]  D. Barnes,et al.  Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. , 2008, Journal of agricultural and food chemistry.

[7]  A. Kaczor,et al.  Morphine studied by vibrational spectroscopy and DFT calculations , 2012 .

[8]  G. B. Williamson,et al.  Polyacetylenes from Chrysoma pauciflosculosa: Effects on florida sandhill species , 1992 .

[9]  Soo‐Young Choi,et al.  In vitro GABA‐transaminase inhibitory compounds from the root of Angelica dahurica , 2005, Phytotherapy research : PTR.

[10]  M. Tasumi,et al.  Normal‐coordinate analysis of β‐carotene isomers and assignments of the Raman and infrared bands , 1983 .

[11]  R. Minto,et al.  Biosynthesis and function of polyacetylenes and allied natural products. , 2008, Progress in lipid research.

[12]  F. Cataldo From dicopper diacetylide (Cu-C≡C-C≡C-Cu) to carbyne , 1998 .

[13]  G. Bringmann,et al.  Dioncophylline C from the roots of Triphyophyllum peltatum, the first 5,1′-coupled dioncophyllaceae alkaloid , 1992 .

[14]  U. Kidmose,et al.  Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. , 2006, Journal of agricultural and food chemistry.

[15]  Y. Panchenko,et al.  Vibrational analysis of buta-1,3-diene and its deutero and 13C derivatives and some of their rotational isomers , 2008 .

[16]  G. Wegner Topochemical reactions of monomers with conjugated triple-bonds. IV. Polymerization of bis-(p-toluene sulfonate) of 2.4-hexadiin-1.6-diol†‡ , 1971 .

[17]  Michael J. Gidley,et al.  Confocal Raman Microspectroscopic Study of the Molecular Status of Carotenoids in Tomato Fruits and Foods , 2011 .

[18]  E. Aranda,et al.  Bioactive polyacetylenes from Bidens pilosa. , 1996, Planta medica.

[19]  T. Hofmann,et al.  Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota l.) and carrot products. , 2004, Journal of agricultural and food chemistry.

[20]  Jing Zhang,et al.  Surface-enhanced Raman scattering and adsorption studies of morphine on silver island film , 2009 .

[21]  D. Zamir,et al.  An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Susz,et al.  Etudes sur les matières végétales volatiles III. Constitution et synthèse du Carlinoxyde , 1935 .

[23]  M. Barańska,et al.  Spatial tissue distribution of polyacetylenes in carrot root. , 2005, The Analyst.

[24]  Hartwig Schulz,et al.  Identification of secondary metabolites in medicinal and spice plants by NIR-FT-Raman microspectroscopic mapping. , 2004, The Analyst.

[25]  M. Mori,et al.  Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. , 1989, Chemical & pharmaceutical bulletin.

[26]  Eleanore T Wurtzel,et al.  Gene Duplication in the Carotenoid Biosynthetic Pathway Preceded Evolution of the Grasses1 , 2004, Plant Physiology.

[27]  R. Chance,et al.  Solid-state photopolymerization of diacetylenes , 1982 .

[28]  R. Baranski,et al.  Tissue-specific accumulation of carotenoids in carrot roots , 2006, Planta.

[29]  S. Bell,et al.  Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). , 2004, The Analyst.

[30]  Y. Kuo,et al.  The Low Polar Constituents from Bidens Pilosa L. var. Minor (Blume) Sherff , 2000 .

[31]  E. Barbu,et al.  Unsymmetrically substituted aliphatic diacetylenes , 1996 .

[32]  D. Christofilos,et al.  Raman Spectroscopy for Intracellular Monitoring of Carotenoid in Blakeslea trispora , 2009, Applied biochemistry and biotechnology.

[33]  M. A. Strehle,et al.  Quality control of Harpagophytum procumbens and its related phytopharmaceutical products by means of NIR‐FT‐Raman spectroscopy , 2005, Biopolymers.

[34]  Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene , 1982 .

[35]  Mats Josefson,et al.  Characterization and mapping of carotenoids in the algae Dunaliella and Phaeodactylum using Raman and target orthogonal partial least squares , 2011 .

[36]  B. Pogson,et al.  Identification of the Carotenoid Isomerase Provides Insight into Carotenoid Biosynthesis, Prolamellar Body Formation, and Photomorphogenesis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010302. , 2002, The Plant Cell Online.

[37]  S. Garrigues,et al.  Solid-phase FT-Raman determination of caffeine in energy drinks , 2005 .

[38]  Hartwig Schulz,et al.  In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. , 2005, Journal of agricultural and food chemistry.

[39]  Alan G. Ryder,et al.  Quantitative analysis of cocaine in solid mixtures using Raman spectroscopy and chemometric methods , 2000 .

[40]  R. E. Dear,et al.  TOXIC FLUORINE COMPOUNDS: XIX. ω-FLUOROALKYNES , 1963 .

[41]  M. Barańska,et al.  Raman mapping of caffeine alkaloid , 2008 .

[42]  G. Sandmann,et al.  Carotenoid biosynthesis and biotechnological application. , 2001, Archives of biochemistry and biophysics.

[43]  L. P. Christensen,et al.  Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds , 2009, Journal of Natural Medicines.

[44]  M. Satoh,et al.  A new cytotoxic chlorine-containing polyacetylene from the callus of Panax ginseng. , 1988, Chemical & pharmaceutical bulletin.

[45]  Ulrich Panne,et al.  Chemical characterization and classification of pollen. , 2008, Analytical chemistry.

[46]  S. Sánchez‐Cortés,et al.  Trans–cis isomerisation of the carotenoid lycopene upon complexation with cholesteric polyester carriers investigated by Raman spectroscopy and density functional theory , 2010 .

[47]  B. Schrader,et al.  Non-destructive Raman analyses--polyacetylenes in plants. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[48]  Tye E. Barber,et al.  Determination of Nicotine by Surface-Enhanced Raman Scattering (SERS) , 1994 .

[49]  B. Wood,et al.  Effects of pre‐processing of Raman spectra on in vivo classification of nutrient status of microalgal cells , 2006 .

[50]  A. P. Davey,et al.  Non-linear optical properties of Group 10 metal alkynyls and their polymers , 1991 .

[51]  B. Lewis,et al.  Location of the antifungal compound falcarindiol in carrot root tissue , 1979 .

[52]  T. Maoka Sterically hindered carotenoids with 3Z, 5Z configuration from the seeds of oriental bitter sweet, Celastrus orbiculatus. , 2009, Phytochemistry.

[53]  J. Marino,et al.  Bulky trialkylsilyl acetylenes in the Cadiot-Chodkiewicz cross-coupling reaction. , 2002, The Journal of organic chemistry.

[54]  Howland D. T. Jones,et al.  Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae) , 2011, PloS one.

[55]  F. Bittner,et al.  On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls , 2009, Proceedings of the National Academy of Sciences.

[56]  Menglong Li,et al.  Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares , 2010 .

[57]  S. Gibbons,et al.  The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). , 2004, Phytochemistry.

[58]  R. Newton,et al.  Stereochemical studies of nitrogen bridgehead compounds by spectral means , 1971 .

[59]  Ulrich Panne,et al.  Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy. , 2009, Analytical chemistry.

[60]  J. Lombardi,et al.  Identification of berberine in ancient and historical textiles by surface‐enhanced Raman scattering , 2007 .

[61]  J. Laserna,et al.  Modern techniques in Raman spectroscopy , 1996 .

[62]  A. Molina-Díaz,et al.  Olive fruit growth and ripening as seen by vibrational spectroscopy. , 2010, Journal of agricultural and food chemistry.

[63]  C. Rabemanantsoa,et al.  Comparative analysis of active constituents in Centella asiatica samples from Madagascar: application for ex situ conservation and clonal propagation. , 2007, Fitoterapia.

[64]  Z. Rappoport The chemistry of dienes and polyenes , 1997 .

[65]  R. Kołos,et al.  Spectroscopy of cyanodiacetylene in solid argon and the photochemical generation of isocyanodiacetylene. , 2007, The Journal of chemical physics.

[66]  R. Kołos Photolysis of dicyanodiacetylene in argon matrices , 1999 .

[67]  G. N. Patel,et al.  Energetics of the thermal polymerization of a diacetylene crystal , 1978 .

[68]  L. Hoskins Resonance Raman excitation profiles of lycopene , 1981 .

[69]  Maciej Roman,et al.  Theoretical Modeling of Molecular Spectra Parameters of Disubstituted Diacetylenes , 2011, J. Chem. Inf. Model..

[70]  Christian Thomsen,et al.  Raman excitation profiles of β ‐carotene – novel insights into the nature of the ν1‐band , 2008 .

[71]  D. Elgersma,et al.  Occurrence of Falcarinol and Falcarindiol In Tomato Plants after Infection with Verticillium albo-atrum and Characterization of Four Phytoalexins by Capillary Gas Chromatography-Mass Spectrometry , 1984 .

[72]  A. Kaczor,et al.  Structural changes of carotenoid astaxanthin in a single algal cell monitored in situ by Raman spectroscopy. , 2011, Analytical chemistry.

[73]  I. Kitagawa,et al.  生薬修治の化学的解明(第1報)紅参(Ginseng Radix Rubra)の含有成分 その1 , 1983 .

[74]  N. Mataga,et al.  S1 and T1 Species of β-Carotene Generated by Direct Photoexcitation from the all-trans, 9-cis, 13-cis, and 15-cis Isomers as Revealed by Picosecond Transient Absorption and Transient Raman Spectroscopies , 1991 .

[75]  J. Ulrich,et al.  Polymorphism of 3,3'-dihydroxy-β,β-carotene-4,4'-dione (Astaxanthin) , 2010 .

[76]  H. Bernstein,et al.  Correlation between the absorption spectra and resonance Raman excitation profiles of astaxanthin , 1976 .

[77]  J. Lauher,et al.  Preparation of Poly(diiododiacetylene), an Ordered Conjugated Polymer of Carbon and Iodine , 2006, Science.

[78]  Zhi-Hong Jiang,et al.  Quantification of two polyacetylenes in Radix Ginseng and roots of related Panax species using a gas chromatography-mass spectrometric method. , 2007, Journal of agricultural and food chemistry.

[79]  Notburga Gierlinger,et al.  The potential of Raman microscopy and Raman imaging in plant research , 2007 .

[80]  L. Stobiński,et al.  Experimental and theoretical studies on corals. I. Toward understanding the origin of color in precious red corals from Raman and IR spectroscopies and DFT calculations , 2010 .

[81]  A. Hirsch,et al.  End-cap stabilized oligoynes: model compounds for the linear sp carbon allotrope carbyne. , 2002, Chemistry.

[82]  H. Bässler Photopolymerization of diacetylenes , 1984 .

[83]  A. Bianucci,et al.  Cytotoxic activity of polyacetylenes and polyenes isolated from roots of Echinacea pallida , 2008, British journal of pharmacology.

[84]  K. Turnau,et al.  In situ Raman imaging of astaxanthin in a single microalgal cell. , 2011, The Analyst.

[85]  M. A. Strehle,et al.  On the way to a quality control of the essential oil of fennel by means of Raman spectroscopy , 2005, Biopolymers.

[86]  R. Baughman Solid-state synthesis of large polymer single crystals , 1974 .

[87]  T. Vo‐Dinh,et al.  Surface-enhanced Raman detection of nicotinamide in vitamin tablets , 1998 .

[88]  N. Hall Twenty-five years of conducting polymers. , 2003, Chemical communications.

[89]  Sam P. Brown,et al.  Autumn tree colours as a handicap signal , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[90]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[91]  T. Maoka Recent progress in structural studies of carotenoids in animals and plants. , 2009, Archives of biochemistry and biophysics.

[92]  E. Młodzińska Survey of plant pigments: molecular and environmental determinants of plant colors , 2009 .

[93]  Philip Heraud,et al.  In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. , 2007, FEMS microbiology letters.

[94]  R. Niessner,et al.  Characterization and discrimination of pollen by Raman microscopy , 2005, Analytical and bioanalytical chemistry.

[95]  Richard R. Schrock,et al.  Conjugation length dependence of Raman scattering in a series of linear polyenes: Implications for polyacetylene , 1991 .

[96]  Howell G. M. Edwards,et al.  NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehips , 2008, Analytical and bioanalytical chemistry.

[97]  R. Ruoff,et al.  Micro‐Raman spectroscopy of algae: Composition analysis and fluorescence background behavior , 2009, Biotechnology and bioengineering.

[98]  J. Hirschberg,et al.  Carotenoid biosynthesis in flowering plants. , 2001, Current opinion in plant biology.

[99]  S. Benvenuti,et al.  Isolation and structure elucidation of cytotoxic polyacetylenes and polyenes from Echinacea pallida. , 2006, Phytochemistry.

[100]  J. Merlin Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems , 1985 .

[101]  A. Myers,et al.  Resonance Raman spectra of trans-1,3,5-hexatriene in solution: evidence for solvent effects on excited-state torsional motion , 1990 .

[102]  Malgorzata Baranska,et al.  Tobacco alkaloids analyzed by Raman spectroscopy and DFT calculations , 2012 .

[103]  Malgorzata Baranska,et al.  Spectroscopic studies on bioactive polyacetylenes and other plant components in wild carrot root. , 2011, Journal of natural products.

[104]  H. Edwards,et al.  Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis , 2009 .

[105]  K. Raynes Bisquinoline antimalarials: their role in malaria chemotherapy. , 1999, International journal for parasitology.

[106]  E. Jones,et al.  9. Researches on acetylenic compounds. Part XXVIII. A new route to diacetylene and its symmetrical derivatives , 1951 .

[107]  R. Baranski,et al.  Potential of NIR‐FT‐Raman spectroscopy in natural carotenoid analysis , 2005, Biopolymers.

[108]  Y. Imai,et al.  Preparation of Ag particle-doped cellulose acetate gel membrane as a surface-enhanced Raman scattering active substrate , 1995 .

[109]  P. Friberg,et al.  Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz. , 1984, Astronomy and astrophysics.

[110]  Joseph Hirschberg,et al.  Molecular genetics of the carotenoid biosynthesis pathway in plants and algae , 1997 .

[111]  C. Büchel,et al.  Pigment organization in fucoxanthin chlorophyll a/c(2) proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. , 2010, Biochimica et biophysica acta.

[112]  M. Schmitt,et al.  Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy. , 2007, Analytical chemistry.

[113]  K. Stulík,et al.  Reliability of Carotenoid Analyses: A Review , 2005 .

[114]  Howell G. M. Edwards,et al.  Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies , 2010 .

[115]  Hartwig Schulz,et al.  Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola x wittrockiana) by FT-Raman spectroscopy , 2011 .

[116]  L. Ziurys Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life , 2006 .

[117]  A. Dreuw,et al.  Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective. , 2009, Biochimica et biophysica acta.

[118]  Malgorzata Baranska,et al.  Nondestructive Raman analysis of polyacetylenes in apiaceae vegetables. , 2011, Journal of agricultural and food chemistry.

[119]  L. Burgio,et al.  Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[120]  P. D. Wit,et al.  Induction of polyacetylenic phytoalexins in Lycopersicon esculentum after inoculation with Cladosporium fulvum (syn. Fulvia fulva) , 1981 .

[121]  W. G. Fateley,et al.  The character of low frequency (250-40 cm−1) raman bands from organic liquids and their comparison to far infrared absorption , 1970 .

[122]  M. Heyde,et al.  Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. , 1973, Journal of the American Chemical Society.

[123]  H. Edwards,et al.  FT-Raman spectroscopic studies of guarana and some extracts , 2005 .

[124]  P. Simon,et al.  Single seed Raman measurements allow taxonomical discrimination of Apiaceae accessions collected in gene banks , 2006, Biopolymers.

[125]  Wolfgang Kiefer,et al.  Identification and characterization of pharmaceuticals using Raman and surface‐enhanced Raman scattering , 2004 .

[126]  F. Miller,et al.  The infrared and Raman spectra of dicyanodiacetylene, NCCCCCCN , 1967 .

[127]  J. M. Hollis,et al.  Interstellar Isomers: The Importance of Bonding Energy Differences , 2005, astro-ph/0506502.

[128]  S. Imoto,et al.  Elicitation of diacetylenic compounds in suspension cultured cells of eggplant. , 1988, Plant physiology.

[129]  M. Schmitt,et al.  In situ UV resonance Raman micro-spectroscopic localization of the antimalarial quinine in cinchona bark. , 2007, The journal of physical chemistry. B.

[130]  Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. , 2007, Physical chemistry chemical physics : PCCP.

[131]  U. Panne,et al.  Surface-enhanced Raman scattering with silver nanostructures generated in situ in a sporopollenin biopolymer matrix. , 2011, Chemical communications.

[132]  V. Sundström,et al.  Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. , 2004, Chemical reviews.

[133]  Hartwig Schulz,et al.  Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods. , 2005, Journal of agricultural and food chemistry.

[134]  Jürgen Popp,et al.  In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations. , 2006, Biopolymers.

[135]  Gerhard Wegner,et al.  Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen / Tochemical Reactions of Monomers with conjugated triple Bonds , 1969 .

[136]  A. Szeghalmi,et al.  Theoretical and pH dependent surface enhanced Raman spectroscopy study on caffeine. , 2003, Biopolymers.

[137]  H. Hashimoto,et al.  Triplet excitation of precursors of spirilloxanthin bound to the chromatophores of Rhodospirillum rubrum as detected by transient Raman spectroscopy , 1991 .

[138]  M. Barańska,et al.  Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. , 2004, The Analyst.

[139]  R. Greil,et al.  Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. , 2005, Journal of agricultural and food chemistry.

[140]  R. Bauer,et al.  Anti-Inflammatory Active Polyacetylenes from Bidens campylotheca , 1994, Planta medica.

[141]  P. Boll,et al.  Polyacetylenes in araliaceae: Their chemistry, biosynthesis and biological significance , 1986 .

[142]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[143]  Malgorzata Baranska,et al.  In situ detection of a single carotenoid crystal in a plant cell using Raman microspectroscopy , 2011 .

[144]  J. Merlin,et al.  Semiempirical and Raman spectroscopic studies of carotenoids. , 1999, Biospectroscopy.

[145]  A. Enejder,et al.  Visualization of β-carotene and starch granules in plant cells using CARS and SHG microscopy , 2011 .

[146]  J. M. Hollis,et al.  Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top , 2006 .

[147]  F. Cataldo Structural relationships between dicopper diacetylide (Cu-C≡C-C≡C-Cu) and dicopper acetylide (Cu-C≡C-Cu) , 1998 .

[148]  M. Barańska,et al.  Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy. , 2006, Journal of agricultural and food chemistry.

[149]  D. Aslanian Vibrational spectroscopic approach to the study of acetylcholine and related compounds. , 1983, Life sciences.

[150]  J. Vivanco,et al.  Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.). , 2008, Phytochemistry.

[151]  V. V. Nechaev,et al.  Calculation of the IR Spectrum and the Molecular Structure of β-Carotene , 2005 .

[152]  C. Glaser Beiträge zur Kenntniss des Acetenylbenzols , 1869 .

[153]  F. Bohlmann,et al.  Natürlich vorkommende Acetylenverbindungen , 1963 .

[154]  M. Schmitt,et al.  Density functional and vibrational spectroscopic analysis of β‐carotene , 2003 .

[155]  R. Baranski,et al.  Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy , 2005, Planta.

[156]  Yong-qing Li,et al.  Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy. , 2011, FEMS microbiology letters.

[157]  B. Schrader Infrared and Raman Spectroscopy , 1995 .

[158]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[159]  W. Krätschmer,et al.  Infrared and ultraviolet absorptions of matrix isolated C(6)O(2). , 2006, The journal of physical chemistry. A.

[160]  Hartwig Schulz,et al.  Identification and quantification of valuable plant substances by IR and Raman spectroscopy , 2007 .

[161]  David W. Lee,et al.  Why Leaves Turn Red , 2002, American Scientist.

[162]  M. Tasumi,et al.  Molecular force fields of s-trans-1,3-butadiene and the second stable conformer. , 1983 .