Generalizations of Shanks transformation and corresponding convergence acceleration algorithms via pfaffians

Firstly, a new sequence transformation that can be expressed in terms of a ratio of two pfaffians is derived based on a special kernel. It can be regarded as a direct generalization of Aitken’s Δ2 process from the point of view of pfaffians and then the corresponding convergence acceleration algorithm is constructed. Numerical examples with applications of this algorithm are also presented. Secondly, we find a way to generalize the Shanks transformation via pfaffians so that a larger class of new sequence transformations are derived. The corresponding recursive algorithms are also proposed.

[1]  Claude Brezinski,et al.  Extrapolation algorithms and Pade´ approximations: a historical survey , 1996 .

[2]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[3]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[4]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[5]  B. Germain-Bonne,et al.  Résultats négatifs en accélération de la convergence , 1980 .

[6]  P. Wynn,et al.  Sequence Transformations and their Applications. , 1982 .

[7]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[8]  Yi He,et al.  A new integrable convergence acceleration algorithm for computing Brezinski–Durbin–Redivo-Zaglia’s sequence transformation via pfaffians , 2018, Numerical Algorithms.

[9]  Yoshihiro Ohta Special Solutions of Discrete Integrable Systems , 2004 .

[10]  C. Brezinski,et al.  Generalizations of Aitken's process for accelerating the convergence of sequences , 2007 .

[11]  Claude Brezinski,et al.  Quasi-Linear Extrapolation Processes , 1988 .

[12]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[13]  Claude Brezinski,et al.  A general extrapolation algorithm , 1980 .

[14]  Avram Sidi Practical Extrapolation Methods: Sequence Transformations , 2003 .

[15]  Yi He,et al.  An Extended Multistep Shanks Transformation and Convergence Acceleration Algorithm with Their Convergence and Stability Analysis , 2013, Numerische Mathematik.

[16]  Claude Brezinski,et al.  Multistep έ-algorithm, Shanks' transformation, and the Lotka-Volterra system by Hirota's method , 2012, Math. Comput..

[17]  J. Delahaye,et al.  Sequence Transformations , 1988 .

[18]  C. Brezinski,et al.  The genesis and early developments of Aitken’s process, Shanks’ transformation, the ε–algorithm, and related fixed point methods , 2018, Numerical Algorithms.

[19]  Yi He,et al.  Construction of new generalizations of Wynn’s epsilon and rho algorithm by solving finite difference equations in the transformation order , 2019, Numerical Algorithms.

[20]  E. J. Barbeau,et al.  Euler's 1760 paper on divergent series , 1976 .

[21]  Claude Brezinski,et al.  History of continued fractions and Pade approximants , 1990, Springer series in computational mathematics.

[22]  H. Miki,et al.  Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems , 2011, 1111.7262.

[23]  Carsten Carstensen,et al.  On a general epsilon algorithm , 1989 .

[24]  Eduardo R. Caianiello,et al.  Combinatorics and renormalization in quantum field theory , 1973 .

[25]  Avram Sidi,et al.  Practical Extrapolation Methods - Theory and Applications , 2003, Cambridge monographs on applied and computational mathematics.

[26]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[27]  Claude Brezinski,et al.  Convergence acceleration during the 20th century , 2000 .

[28]  Guido Walz,et al.  Asymptotics and Extrapolation , 1996 .

[29]  B. Burrows,et al.  Lower bounds for quartic anharmonic and double‐well potentials , 1993 .

[30]  Yi He,et al.  Convergence Acceleration Algorithm via an Equation Related to the Lattice Boussinesq Equation , 2011, SIAM J. Sci. Comput..

[31]  E. J. Barbeau,et al.  Euler Subdues a very Obstreperous Series , 1979 .

[32]  Eduardo R. Caianiello,et al.  Renormalization and Invariance in Quantum Field Theory , 2012 .

[33]  広田 良吾,et al.  The direct method in soliton theory , 2004 .