Generalized B-Splines in Isogeometric Analysis
暂无分享,去创建一个
[1] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[2] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[3] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[4] Durkbin Cho,et al. Generalized T-splines and VMCR T-meshes , 2014, 1401.6319.
[5] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[6] Dmitry Berdinsky,et al. Trigonometric generalized T-splines , 2014 .
[7] Tom Lyche,et al. Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines , 2016, Appl. Math. Comput..
[8] Hendrik Speleers,et al. Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial , 2016 .
[9] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[10] Hendrik Speleers,et al. Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.
[11] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[12] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[13] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[14] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[15] Paolo Costantini,et al. Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..
[16] Tom Lyche,et al. On the dimension of Tchebycheffian spline spaces over planar T-meshes , 2016, Comput. Aided Geom. Des..
[17] Thomas J. R. Hughes,et al. Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis , 2017 .
[18] L. Schumaker,et al. Local support bases for a class of spline functions , 1976 .
[19] Alessandra Sestini,et al. Non-polynomial spline alternatives in Isogeometric Symmetric Galerkin BEM , 2017 .
[21] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[22] Larry L. Schumaker,et al. Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..
[23] Hendrik Speleers,et al. Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..
[24] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[25] Fabio Roman,et al. Spaces of generalized splines over T-meshes , 2014, J. Comput. Appl. Math..
[26] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[27] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[28] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[29] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[30] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[31] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[32] Tom Lyche,et al. A recurrence relation for chebyshevianB-splines , 1985 .
[33] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[34] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[35] Juan Manuel Peña,et al. Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..
[36] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[37] Tom Lyche,et al. Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.
[38] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[39] Marie-Laurence Mazure,et al. How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.
[40] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[41] Hendrik Speleers,et al. Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness , 2017, Numerische Mathematik.
[42] P. Gould. Introduction to Linear Elasticity , 1983 .
[43] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[44] H. Speleers,et al. Numerical approximation of GB-splines by a convolutional approach , 2017 .