Generalized B-Splines in Isogeometric Analysis

In this paper, we survey the use of generalized B-splines in isogeometric Galerkin and collocation methods. Generalized B-splines are a special class of Tchebycheffian B-splines and form an attractive alternative to standard polynomial B-splines and NURBS in both modeling and simulation. We summarize their definition and main properties, and we illustrate their use in a selection of numerical examples in the context of isogeometric analysis. For practical applications, we mainly focus on trigonometric and hyperbolic generalized B-splines.

[1]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[2]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[3]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[4]  Durkbin Cho,et al.  Generalized T-splines and VMCR T-meshes , 2014, 1401.6319.

[5]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[6]  Dmitry Berdinsky,et al.  Trigonometric generalized T-splines , 2014 .

[7]  Tom Lyche,et al.  Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines , 2016, Appl. Math. Comput..

[8]  Hendrik Speleers,et al.  Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial , 2016 .

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  Hendrik Speleers,et al.  Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.

[11]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[12]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[13]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[14]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[15]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[16]  Tom Lyche,et al.  On the dimension of Tchebycheffian spline spaces over planar T-meshes , 2016, Comput. Aided Geom. Des..

[17]  Thomas J. R. Hughes,et al.  Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis , 2017 .

[18]  L. Schumaker,et al.  Local support bases for a class of spline functions , 1976 .

[19]  Alessandra Sestini,et al.  Non-polynomial spline alternatives in Isogeometric Symmetric Galerkin BEM , 2017 .

[21]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[22]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[23]  Hendrik Speleers,et al.  Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..

[24]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[25]  Fabio Roman,et al.  Spaces of generalized splines over T-meshes , 2014, J. Comput. Appl. Math..

[26]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[28]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[29]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[30]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[31]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[32]  Tom Lyche,et al.  A recurrence relation for chebyshevianB-splines , 1985 .

[33]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[34]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[35]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[36]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[37]  Tom Lyche,et al.  Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.

[38]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[39]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[40]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[41]  Hendrik Speleers,et al.  Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness , 2017, Numerische Mathematik.

[42]  P. Gould Introduction to Linear Elasticity , 1983 .

[43]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[44]  H. Speleers,et al.  Numerical approximation of GB-splines by a convolutional approach , 2017 .