Sparse Grids based Adaptive Noise Reduction strategy for Particle-In-Cell schemes

We propose a sparse grids based adaptive noise reduction strategy for electrostatic particle-in-cell (PIC) simulations. Our approach is based on the key idea of relying on sparse grids instead of a regular grid in order to increase the number of particles per cell for the same total number of particles, as first introduced in Ricketson and Cerfon (Plasma Phys. and Control. Fusion, 59(2), 024002). Adopting a new filtering perspective for this idea, we construct the algorithm so that it can be easily integrated into high performance large-scale PIC code bases. Unlike the physical and Fourier domain filters typically used in PIC codes, our approach automatically adapts to mesh size, number of particles per cell, smoothness of the density profile and the initial sampling technique. Thanks to the truncated combination technique, we can reduce the larger grid-based error of the standard sparse grids approach for non-aligned and non-smooth functions. We propose a heuristic based on formal error analysis for selecting the optimal truncation parameter at each time step, and develop a natural framework to minimize the total error in sparse PIC simulations. We demonstrate its efficiency and performance by means of two test cases: the diocotron instability in two dimensions, and the three-dimensional electron dynamics in a Penning trap. Our run time performance studies indicate that our new scheme can provide significant speedup and memory reduction as compared to regular PIC for achieving comparable accuracy in the charge density deposition.

[1]  J. J. Yang,et al.  Proposal for an electron antineutrino disappearance search using high-rate 8Li production and decay. , 2012, Physical review letters.

[2]  Lowell S. Brown,et al.  Geonium theory: Physics of a single electron or ion in a Penning trap , 1986 .

[3]  Daniel F. Martin,et al.  A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .

[4]  Md. Mohsin Ali,et al.  Highly Scalable Algorithms for the Sparse Grid Combination Technique , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium Workshop.

[5]  Francis Filbet,et al.  Numerical methods for the Vlasov equation , 2003 .

[6]  K. Fine,et al.  Experiments on vortex dynamics in pure electron plasmas , 1990 .

[7]  William Thielicke FFT? , 2020 .

[8]  R. Davidson,et al.  Physics of Nonneutral Plasmas , 1991 .

[9]  Hari Sundar,et al.  FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube , 2014, SIAM J. Sci. Comput..

[10]  A. Aydemir A unified Monte Carlo interpretation of particle simulations and applications to non-neutral plasmas , 1994 .

[11]  Hiroshi Nakashima,et al.  Large Scale Manycore-Aware PIC Simulation with Efficient Particle Binning , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[12]  K. Blaum,et al.  Penning traps as a versatile tool for precise experiments in fundamental physics , 2009, 0909.1095.

[13]  Kai Schneider,et al.  WAVELET DENOISING FOR POSTPROCESSING OF A 2D PARTICLE - IN - CELL CODE ∗, ∗∗, ∗∗∗, ∗∗∗∗ , 2007 .

[14]  C.C.W. Leentvaar Pricing multi-asset options with sparse grids , 2008 .

[15]  R. Sydora,et al.  Low-noise electromagnetic and relativistic particle-in-cell plasma simulation models , 1999 .

[16]  Hans-Joachim Bungartz,et al.  Variants of the Combination Technique for Multi-Dimensional Option Pricing , 2012 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  A. Adelmann,et al.  OPAL a Versatile Tool for Charged Particle Accelerator Simulations , 2019, 1905.06654.

[19]  Michael Griebel,et al.  The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.

[20]  Phillip Colella,et al.  A 4th-Order Particle-in-Cell Method with Phase-Space Remapping for the Vlasov-Poisson Equation , 2016, SIAM J. Sci. Comput..

[21]  Dirk Pflüger,et al.  Spatially Adaptive Sparse Grids for High-Dimensional Problems , 2010 .

[22]  A. Spitkovsky Simulations of relativistic collisionless shocks: shock structure and particle acceleration , 2005, astro-ph/0603211.

[23]  J. Verboncoeur Particle simulation of plasmas: review and advances , 2005 .

[24]  J. J. Yang,et al.  Beam dynamics simulation for the high intensity DAEδALUS cyclotrons , 2012, 1209.5864.

[25]  Courtlandt L. Bohn,et al.  Particle-in-cell beam dynamics simulations with a wavelet-based Poisson solver , 2007 .

[26]  Georges-Henri Cottet,et al.  Particle Methods for the One-Dimensional Vlasov–Poisson Equations , 1984 .

[27]  Phillip Colella,et al.  An Adaptive, High-Order Phase-Space Remapping for the Two Dimensional Vlasov-Poisson Equations , 2012, SIAM J. Sci. Comput..

[28]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[29]  Dirk Pflüger,et al.  Hybrid parallel solutions of the Black-Scholes PDE with the truncated combination technique , 2012, 2012 International Conference on High Performance Computing & Simulation (HPCS).

[30]  Richard E. Denton,et al.  δf Algorithm , 1995 .

[31]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[32]  Mario Heene,et al.  A massively parallel combination technique for the solution of high-dimensional PDEs , 2018 .

[33]  Richard E. Denton,et al.  {delta}f Algorithm , 1993 .

[34]  Jonathan Joseph Hu,et al.  MueLu User?s Guide. , 2019 .

[35]  Fine,et al.  Measurements of symmetric vortex merger. , 1991, Physical review letters.

[36]  Barry Koren,et al.  Error analysis for function representation by the sparse-grid combination technique , 1998 .

[37]  H. Qin,et al.  Reducing noise for PIC simulations using kernel density estimation algorithm , 2018, Physics of Plasmas.

[38]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[39]  Phillip Colella,et al.  A Particle-in-cell Method with Adaptive Phase-space Remapping for Kinetic Plasmas , 2011, SIAM J. Sci. Comput..

[40]  Cameron G. R. Geddes,et al.  Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame , 2011, J. Comput. Phys..

[41]  Hans-Joachim Bungartz,et al.  Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .

[42]  A. Lamberts,et al.  SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code , 2017, 1702.04732.

[43]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[44]  A. Cerfon Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons. , 2016, Physical review letters.

[45]  J. Dawson Particle simulation of plasmas , 1983 .

[46]  W. Zhang,et al.  Warp-X: A new exascale computing platform for beam–plasma simulations , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[47]  J. Freidberg,et al.  Analytic fluid theory of beam spiraling in high-intensity cyclotrons , 2012, 1210.1175.

[48]  Laurent Villard,et al.  A global collisionless PIC code in magnetic coordinates , 2007, Comput. Phys. Commun..

[49]  Lee F Ricketson,et al.  Sparse grid techniques for particle-in-cell schemes , 2016, 1607.06516.

[50]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[51]  Balsa Terzic,et al.  New density estimation methods for charged particle beams with applications to microbunching instability , 2011 .

[52]  Lloyd N. Trefethen,et al.  Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..

[53]  Marcus S. Day,et al.  AMReX: a framework for block-structured adaptive mesh refinement , 2019, J. Open Source Softw..

[54]  A. Adelmann,et al.  Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application , 2010, 1003.0326.

[55]  Matthias Frey,et al.  On architecture and performance of adaptive mesh refinement in an electrostatics Particle-In-Cell code , 2018, Comput. Phys. Commun..

[56]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[57]  Kai Schneider,et al.  Wavelet-based density estimation for noise reduction in plasma simulations using particles , 2009, J. Comput. Phys..