The complexity of the vertex-minor problem

A graph H is a vertex-minor of a graph G if it can be reached from G by the successive application of local complementations and vertex deletions. Vertex-minors have been the subject of intense study in graph theory over the last decades and have found applications in other fields such as quantum information theory. Therefore it is natural to consider the computational complexity of deciding whether a given graph G has a vertex-minor isomorphic to another graph H, which was previously unknown. Here we prove that this decision problem is NP-complete, even when restricting H, G to be circle graphs, a class of graphs that has a natural relation to vertex-minors.

[1]  Bruno Courcelle,et al.  Circle graphs and monadic second-order logic , 2008, J. Appl. Log..

[2]  Simon Perdrix,et al.  Pivoting makes the ZX-calculus complete for real stabilizers , 2013, QPL.

[3]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[4]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[5]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[6]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[7]  O-joung Kwon,et al.  Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width , 2012, Discret. Appl. Math..

[8]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[9]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.

[10]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[11]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[12]  Mehdi Mhalla,et al.  Graph States, Pivot Minor, and Universality of (X, Z)-Measurements , 2012, Int. J. Unconv. Comput..

[13]  O-joung Kwon,et al.  Excluded vertex-minors for graphs of linear rank-width at most k , 2014, Eur. J. Comb..

[14]  Bart De Moor,et al.  Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .

[15]  James F. Geelen,et al.  Circle graph obstructions under pivoting , 2009, J. Graph Theory.

[16]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[17]  Sang-il Oum,et al.  Rank-width: Algorithmic and structural results , 2016, Discret. Appl. Math..

[18]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[19]  Robin Thomas,et al.  On the complexity of finding iso- and other morphisms for partial k-trees , 1992, Discret. Math..

[20]  Axel Dahlberg,et al.  How to transform graph states using single-qubit operations: computational complexity and algorithms , 2018, Quantum Science and Technology.

[21]  Daniël Paulusma,et al.  Computing Small Pivot-Minors , 2018, WG.

[22]  Axel Dahlberg,et al.  Transforming graph states using single-qubit operations , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.