Tableau methods for analysis and design of linear systems

Certain classes of elementary operations on the system matrix of a linear system are defined, and then their use is illustrated for the calculation of canonical forms, the largest (A,B)-invariant and controllability subspaces in ker(C), transmission zeros, and minimal inverses. Questions of numerical accuracy are discussed. The results are directly codable as efficient numerical algorithms, and may be extended to the use of orthogonal transformations.

[1]  A. Morse,et al.  Status of noninteracting control , 1971 .

[2]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[3]  J. Rissanen Basis of invariants and canonical forms for linear dynamic systems , 1974, Autom..

[4]  B. Sridhar,et al.  An efficient algorithm for calculation of the Luenberger canonical form , 1973 .

[5]  Luenberger's canonical form revisited , 1974 .

[6]  James S. Thorp,et al.  The singular pencil of a linear dynamical system , 1973 .

[7]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[8]  A. Laub,et al.  Calculation of transmission zeros using QZ techniques , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[9]  J. Aplevich Construction of Generalized Input-Output Representations of Linear Systems Via Tableau Methods , 1978 .

[10]  A. Morse Structural Invariants of Linear Multivariable Systems , 1973 .

[11]  W. Wonham,et al.  The role of transmission zeros in linear multivariable regulators , 1975 .

[12]  A. C. Pugh,et al.  Transmission and system zeros , 1977 .

[13]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[14]  A. Laub,et al.  Computation of supremal (A,B)-invariant and controllability subspaces , 1977 .

[15]  E. Davison,et al.  Properties and calculation of transmission zeros of linear multivariable systems , 1974, Autom..

[16]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[17]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[18]  G. Stewart Introduction to matrix computations , 1973 .

[19]  Edward J. Davison,et al.  Further discussion on the calculation of transmission zeros , 1978, Autom..

[20]  Edward J. Davison,et al.  Remark on multiple transmission zeros of a system , 1976, Autom..

[21]  J. D. Aplevich,et al.  Direct computation of canonical forms for linear systems by elementary matrix operations , 1974 .

[22]  David Q. Mayne,et al.  An elementary derivation of Rosenbrock's minimal realization algorithm , 1973 .

[23]  V. Popov Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .

[24]  Algebraic method for closed-loop deadbeat control , 1974 .