Generalized locally Toeplitz sequences : Theory and applications
暂无分享,去创建一个
[1] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[2] Imanol Perez Arribas. Sobolev Spaces and Partial Differential Equations , 2017 .
[3] H. Widom. Extreme eigenvalues of translation kernels , 1961 .
[4] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[5] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[6] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .
[7] Paolo Tilli,et al. Locally Toeplitz sequences: spectral properties and applications , 1998 .
[8] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[9] Albrecht Böttcher,et al. Spectral properties of banded Toeplitz matrices , 1987 .
[10] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[11] Paolo Tilli,et al. On unitarily invariant norms of matrix-valued linear positive operators , 2002 .
[12] Milutin R. Dostanić,et al. On the distribution singular values of Toeplitz matrices , 2001 .
[13] Federico Poloni,et al. An effective matrix geometric mean satisfying the Ando-Li-Mathias properties , 2010, Math. Comput..
[14] Hendrik Speleers,et al. Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices , 2017 .
[15] Stefano Serra Capizzano,et al. On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..
[16] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[17] Paolo Tilli,et al. Asymptotic Spectra of Hermitian Block Toeplitz Matrices and Preconditioning Results , 2000, SIAM J. Matrix Anal. Appl..
[18] O. Zabroda. Generalized convolution operators and asymptotic spectral theory , 2006 .
[19] F. Avram. On bilinear forms in Gaussian random variables and Toeplitz matrices , 1988 .
[20] Asymptotic Behavior of Variable-Coefficient Toeplitz Determinants , 2001 .
[21] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[22] Stefano Serra Capizzano,et al. Asymptotic Zero Distribution of Orthogonal Polynomials with Discontinuously Varying Recurrence Coefficients , 2001, J. Approx. Theory.
[23] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[24] Frederic Barbaresco,et al. Robust statistical Radar Processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP Processing in Siegel homogeneous bounded domains , 2011, 2011 12th International Radar Symposium (IRS).
[25] R. Bhatia,et al. Riemannian geometry and matrix geometric means , 2006 .
[26] H. Widom,et al. From Toeplitz Eigenvalues through Green’s Kernels to Higher-order Wirtinger-Sobolev Inequalities , 2004, math/0412269.
[27] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[28] Ben Jeuris,et al. A survey and comparison of contemporary algorithms for computing the matrix geometric mean , 2012 .
[29] Stefano Serra Capizzano,et al. Spectral behavior of preconditioned non-Hermitian multilevel block Toeplitz matrices with matrix-valued symbol , 2014, Appl. Math. Comput..
[30] Arno B. J. Kuijlaars,et al. The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .
[31] B. Silbermann,et al. Sequences of variable-coefficient Toeplitz matrices and their singular values , 2016 .
[32] Stefano Serra,et al. On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .
[33] S. Serra-Capizzano,et al. The theory of generalized locally Toeplitz sequences : a review, an extension, and a few representative applications , 2017 .
[34] D. Fasino,et al. From Toeplitz matrix sequences to zero distribution of orthogonal polynomials , 2001 .
[35] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..
[36] Marco Donatelli,et al. Canonical Eigenvalue Distribution of Multilevel Block Toeplitz Sequences with Non-Hermitian Symbols , 2012 .
[37] Stefano Serra Capizzano,et al. Singular‐value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators , 2014, Numer. Linear Algebra Appl..
[38] Stefano Serra,et al. On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .
[39] Debora Sesana. Spectral distributions of structured matrix-sequences: tools and applications. , 2011 .
[40] Eugene E. Tyrtyshnikov,et al. Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .
[41] Carlo Garoni. Structured matrices coming from PDE approximation theory: spectral analysis, spectral symbol and design of fast iterative solvers. , 2015 .
[42] F. Barbaresco,et al. Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar , 2008, 2008 IEEE Radar Conference.
[43] Toeplitz matrices with variable coefficients, pseudodifferential operators, and Strichartz's method , 2010 .
[44] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[45] Paolo Tilli,et al. Some Results on Complex Toeplitz Eigenvalues , 1999 .
[46] Estimates for the minimum eigenvalue and the condition number of Hermitian (block) Toeplitz matrices , 2013 .
[47] R. Karandikar,et al. Monotonicity of the matrix geometric mean , 2012 .
[48] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .
[49] S. Serra Capizzano,et al. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .
[50] Stefano Serra Capizzano,et al. Analysis of preconditioning strategies for collocation linear systems , 2003 .
[51] S. Serra-Capizzano,et al. Approximating classes of sequences: The Hermitian case , 2011 .
[52] W. Rudin. Real and complex analysis , 1968 .
[53] Stefano Serra-Capizzano,et al. The eigenvalue distribution of products of Toeplitz matrices – Clustering and attraction , 2010 .
[54] A. Böttcher,et al. Uniform Boundedness of Toeplitz Matrices with Variable Coefficients , 2008 .
[55] Carlo Garoni,et al. A general tool for determining the asymptotic spectral distribution of Hermitian matrix-sequences , 2015 .
[56] Noboru Nakamura,et al. Geometric Means of Positive Operators , 2009 .
[57] Alessandro Reali,et al. Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .
[58] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[59] Dario Andrea Bini,et al. Metodi Numerici per l'Algebra Lineare. , 1989 .
[60] F. Barbaresco. Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median , 2013 .
[61] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[62] Alessandro Reali,et al. AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .
[63] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[64] L. Hörmander,et al. Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .
[65] Stefano Serra-Capizzano,et al. Stability of the notion of approximating class of sequences and applications , 2008 .
[66] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[67] Maya Neytcheva,et al. Spectral analysis of coupled PDEs and of their Schur complements via the notion of generalized locally Toeplitz sequences , 2015 .
[68] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .
[69] Carlo Garoni,et al. Tools for Determining the Asymptotic Spectral Distribution of non-Hermitian Perturbations of Hermitian Matrix-Sequences and Applications , 2015 .
[70] Pedro M. Crespo,et al. Mass concentration in quasicommutators of Toeplitz matrices , 2007 .
[71] Stefano Serra-Capizzano. More Inequalities and Asymptotics for Matrix Valued Linear Positive Operators: the Noncommutative Case , 2002 .
[72] A. Böttcher,et al. Variable-coefficient Toeplitz Matrices with Symbols beyond the Wiener Algebra , 2010 .
[73] Carlo Garoni,et al. Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..
[74] A. Böttcher,et al. On the condition numbers of large semidefinite Toeplitz matrices , 1998 .
[75] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[76] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[77] Szego-Type Limit Theorems for Generalized Discrete Convolution Operators , 2005 .
[78] R. Bhatia. Positive Definite Matrices , 2007 .
[79] Bernd Silbermann,et al. Asymptotic Behavior of Generalized Convolutions: An Algebraic Approach , 2006 .
[80] Hendrik Speleers,et al. Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..
[81] Stefano Serra-Capizzano,et al. Eigenvalue-eigenvector structure of Schoenmakers–Coffey matrices via Toeplitz technology and applications , 2016 .
[82] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[83] G. Smith,et al. Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .
[84] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[85] Dario Bini,et al. Computing the Karcher mean of symmetric positive definite matrices , 2013 .
[86] Seymour V. Parter,et al. On the extreme eigenvalues of Toeplitz matrices , 1961 .
[87] Leonid Golinskii,et al. The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.
[88] Y. Lim,et al. Monotonic properties of the least squares mean , 2010, 1007.4792.
[89] A. Böttcher,et al. Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis , 2000 .