Pellet injection technology

During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter‐size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures (≂10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mec...

[1]  C. A. Foster,et al.  Development of Hydrogen Pellet Injectors at ORNL , 1983 .

[2]  K. Kim,et al.  Variational analysis of a plasma-arc armature inside a railgun solid-hydrogen-pellet accelerator for fueling fusion reactors , 1990 .

[3]  P. Souers Cryogenic hydrogen data pertinent to magnetic fusion energy , 1979 .

[4]  R. Carlevaro,et al.  High‐speed pellet injection with a two‐stage pneumatic gun , 1988 .

[5]  C A Foster,et al.  Pneumatic hydrogen pellet injection system for the ISX tokamak. , 1979, The Review of scientific instruments.

[6]  M. J. Gouge,et al.  Design considerations for single-stage and two-stage pneumatic pellet injectors , 1989 .

[7]  S. K. Combs,et al.  Operation of a repeating pneumatic hydrogen pellet injector on the Tokamak Fusion Test Reactor , 1986 .

[8]  D. Zasche,et al.  Pellet injection with improved confinement in ASDEX , 1988 .

[9]  P. W. Fisher,et al.  Tritium pellet injector for TFTR , 1992 .

[10]  A. Oikawa,et al.  Improvement of energy confinement time by continuous pellet fuelling in beam-heated Doublet III limiter discharges , 1985 .

[11]  S. A. Andersen,et al.  Development of D2 pellet injectors , 1985 .

[12]  C. A. Foster,et al.  Plasma edge control in TORE SUPRA , 1990 .

[13]  L. L. Lengyel Pellet Injection and Toroidal Confinement: Report on the IAEA Technical Committee Meeting , 1989 .

[14]  R. Hawke Fusion fuel pellet injection with a railgun , 1983 .

[15]  M. Kaufmann Review on pellet fuelling , 1986 .

[16]  K. Kim,et al.  Development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas , 1993 .

[17]  R. Lang,et al.  Fast, Controlled Stepping Drive for D_sub.2 Filament Ejection , 1985 .

[18]  K. Kim,et al.  Investigation of the behavior of a plasma‐arc armature inside a two‐stage railgun and methods for preventing arcing , 1989 .

[19]  M. J. Gouge,et al.  Tritium pellet injector results , 1989 .

[20]  R. Lang,et al.  Centrifugal pellet injector with direct solid-deuterium feed , 1986 .

[21]  M. J. Gouge,et al.  Acceleration of small, light projectiles (including hydrogen isotopes) to high speeds using a two‐stage light gas gun , 1990 .

[22]  M. Gouge,et al.  A combined microwave cavity and photographic diagnostic for high‐speed projectiles , 1990 .

[23]  A. Frattolillo,et al.  Solid deuterium pellet injection with a two‐stage pneumatic gun , 1989 .

[24]  S. L. Milora,et al.  Review of hydrogen pellet injection technology for plasma fueling applications , 1989 .

[25]  G. Riva,et al.  Modeling of Pellet Acceleration by Two-Stage Guns , 1989 .

[26]  C. Andelfinger,et al.  A new centrifuge pellet injector for fusion experiments , 1993 .

[27]  T. Baba,et al.  Development of a Two-Stage Pellet Injector for Heliotron-E , 1991 .

[28]  R. V. Carlson,et al.  Tritium Proof-of-Principle Injector Experiment , 1988 .

[29]  S. K. Combs,et al.  Simple pipe gun for hydrogen pellet injection , 1986 .

[30]  C. A. Foster,et al.  Solid hydrogen pellet injection into the ORMAK Tokamak , 1977 .

[31]  S. K. Combs,et al.  Performance characterization of pneumatic single pellet injection system , 1983 .

[32]  S. K. Combs,et al.  Fast‐opening magnetic valve for high‐pressure gas injection and applications to hydrogen pellet fueling systems , 1986 .

[33]  A. Sillesen,et al.  ABLATION OF HYDROGEN PELLETS IN HYDROGEN AND HELIUM PLASMAS , 1975 .

[34]  P. Nielsen,et al.  The feasibility of pellet re-fuelling of a fusion reactor , 1980 .

[35]  C. Foster Solid deuterium centrifuge pellet injector , 1983 .

[36]  Thomas C Jernigan,et al.  Performance of a pneumatic hydrogen‐pellet injection system on the Joint European Torus , 1989 .

[37]  M. J. Gouge,et al.  ORNL CENTRIFUGE PELLET FUELING SYSTEM , 1992 .

[38]  S. A. Andersen,et al.  Injection of deuterium pellets , 1984 .

[39]  S. K. Combs,et al.  Repeating pneumatic hydrogen pellet injector for plasma fueling , 1985 .

[40]  C. A. Foster,et al.  Results of pellet fuelled discharges on the Doublet III tokamak , 1987 .

[41]  C. A. Foster,et al.  Apparatus for producing uniform solid spheres of hydrogen , 1977 .

[42]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[43]  S. K. Combs,et al.  A three-barrel repeating pneumatic pellet injector for plasma fueling of the Joint European Torus , 1988 .

[44]  S. Milora Fueling of magnetic confinement devices , 1982 .

[46]  S. L. Milora,et al.  Rview of pellet fueling , 1981 .

[47]  K. Kim,et al.  Hydrogen pellet acceleration with a two‐stage system consisting of a gas gun and a fuseless electromagnetic railgun , 1986 .

[48]  R. D. Burris,et al.  Eight‐shot pneumatic pellet injection system for the tokamak fusion test reactor , 1987 .

[49]  A. Taylor A solid hydrogen pellet launcher , 1969 .

[50]  M. Greenwald,et al.  Microwave measurement of the mass of frozen hydrogen pellets , 1988 .

[51]  P. Souers,et al.  Hydrogen Properties for Fusion Energy , 1986 .

[52]  M. J. Gouge,et al.  Pellet fueling system for ITER , 1992 .