The Mass-Metallicity Relation at z≳2

We use a sample of 87 rest-frame UV-selected star-forming galaxies with mean spectroscopic redshift ⟨z⟩ = 2.26 ± 0.17 to study the correlation between metallicity and stellar mass at high redshift. Using stellar masses determined from SED fitting to observed 0.3-8 μm photometry, we divide the sample into six bins in stellar mass and construct six composite Hα + [N ] spectra from all of the objects in each bin. We estimate the mean oxygen abundance in each bin from the [N II]/Hα ratio and find a monotonic increase in metallicity with increasing stellar mass, from 12 + log(O/H) < 8.2 for galaxies with ⟨M⋆⟩ = 2.7 × 109 M☉ to 12 + log(O/H) = 8.6 for galaxies with ⟨M⋆⟩ = 1.0 × 1011 M☉. We use the empirical relation between SFR density and gas density to estimate the gas fractions of the galaxies, finding an increase in gas fraction with decreasing stellar mass. These gas fractions, combined with the observed metallicities, allow the estimation of the effective yield yeff as a function of stellar mass; in constrast to observations in the local universe, which show a decrease in yeff with decreasing baryonic mass, we find a slight increase. Such a variation of metallicity with gas fraction is best fitted by a model with supersolar yield and an outflow rate ~4 times higher than the SFR. We conclude that the mass-metallicity relation at high redshift is driven by the increase in metallicity as the gas fraction decreases through star formation and is likely modulated by metal loss from strong outflows in galaxies of all masses.

[1]  P. V. D. Okkum,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using L ATEX style emulateapj A SIGNIFICANT POPULATION OF RED, NEAR-IR SELECTED HIGH REDSHIFT GALAXIES 1 , 2003 .

[2]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[3]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[4]  J. Ostriker,et al.  A simple model for the evolution of disc galaxies: the Milky Way , 2005, astro-ph/0505594.

[5]  G. Gavazzi,et al.  UV Dust Attenuation in Normal Star-Forming Galaxies. I. Estimating the LTIR/LFUV Ratio , 2005, astro-ph/0510165.

[6]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[7]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[8]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[9]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[10]  F. Bresolin,et al.  A VLT study of metal-rich extragalactic H II regions - I. Observations and empirical abundances , 2005, astro-ph/0506088.

[11]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3 , 2005, astro-ph/0505122.

[12]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[13]  Almudena Alonso-Herrero,et al.  Metal Abundances of KISS Galaxies. IV. Galaxian Luminosity-Metallicity Relations in the Optical and Near-Infrared , 2005, astro-ph/0502202.

[14]  M. Franx,et al.  Gemini Near-Infrared Spectrograph Observations of a Red Star-forming Galaxy at z = 2.225: Evidence of Shock Ionization Due to a Galactic Wind , 2005, astro-ph/0502082.

[15]  G. Stasińska Biases in abundance derivations for metal-rich nebulae , 2005, astro-ph/0501574.

[16]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[17]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[18]  C. Baugh,et al.  The metal enrichment of the intracluster medium in hierarchical galaxy formation models , 2004, astro-ph/0408529.

[19]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[20]  C. Leitherer,et al.  Spectral Modeling of Star-forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High-Redshift Galaxies , 2004, astro-ph/0407296.

[21]  G. Fazio,et al.  Deep Mid-Infrared Observations of Lyman Break Galaxies , 2004, astro-ph/0405624.

[22]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[23]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[24]  H Germany,et al.  The Luminosity-Metallicity relation of distant luminous infrared galaxies , 2004, astro-ph/0404488.

[25]  P. P. van der Werf,et al.  Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies , 2004, astro-ph/0404471.

[26]  F. Bresolin,et al.  The First Measured Electron Temperatures for Metal-rich H II Regions in M51 , 2004 .

[27]  H. Hippelein,et al.  The metallicity-luminosity relation at medium redshift based on faint CADIS emission line galaxies , 2004, astro-ph/0402048.

[28]  S. Maddox,et al.  The luminosity–metallicity relation in the local Universe from the 2dF Galaxy Redshift Survey , 2004 .

[29]  S. Borgani,et al.  Simulating the metal enrichment of the intracluster medium , 2004, astro-ph/0401576.

[30]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[31]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[32]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[33]  V. Springel,et al.  Photometric properties of Lyman-break galaxies at z = 3 in cosmological SPH simulations , 2003, astro-ph/0311295.

[34]  Simon D. M. White,et al.  Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.

[35]  T. M. Heckman,et al.  A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. II. Quantifying Supernova Feedback , 2003, astro-ph/0306598.

[36]  K. Freeman,et al.  The Baryonic Tully-Fisher Relation , 1999, The Astrophysical journal.

[37]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[38]  W. Sargent,et al.  The Distribution of Metallicity in the Intergalactic Medium at z ~ 2.5: O VI and C IV Absorption in the Spectra of Seven QSOs , 2003, astro-ph/0312467.

[39]  N. Vogt,et al.  The DEEP Groth Strip Survey. VII. The Metallicity of Field Galaxies at 0.26 < z < 0.82 and the Evolution of the Luminosity-Metallicity Relation , 2003, astro-ph/0310346.

[40]  E. Terlevich,et al.  Lyα Emission in Starbursts: Implications for Galaxies at High Redshift , 2003, astro-ph/0309396.

[41]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[42]  C. Carollo,et al.  The Metallicities of Star-forming Galaxies at Intermediate Redshifts 0.47 < z < 0.92 , 2003, astro-ph/0307300.

[43]  A. Finoguenov,et al.  Role of Clusters of Galaxies in the Evolution of the Metal Budget in the Universe , 2003, astro-ph/0305190.

[44]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[45]  F. Bresolin,et al.  The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale , 2003, astro-ph/0303452.

[46]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[47]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[48]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[49]  A. W. Blain,et al.  A vigorous starburst in the SCUBA galaxy N2 850.4 , 2003, astro-ph/0303128.

[50]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[51]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[52]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[53]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[54]  R. Genzel,et al.  Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.

[55]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[56]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[57]  D. Garnett The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.

[58]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[59]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[60]  T. Heckman,et al.  The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569 , 2002, astro-ph/0203513.

[61]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[62]  Cambridge,et al.  New Light on the Search for Low-Metallicity Galaxies , 2001, astro-ph/0110356.

[63]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[64]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[65]  C. Martin,et al.  Star Formation Thresholds in Galactic Disks , 2001, astro-ph/0103181.

[66]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[67]  Stuart Lumsden,et al.  Optical Classification of Southern Warm Infrared Galaxies , 2001 .

[68]  C. Leitherer,et al.  Ultraviolet Line Spectra of Metal-poor Star-forming Galaxies , 2000, astro-ph/0012358.

[69]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[70]  H. Kobulnicky,et al.  Near-Infrared Spectroscopy of Two Galaxies at z = 2.3 and z = 2.9: New Probes of Chemical and Dynamical Evolution at High Redshift , 2000, astro-ph/0008242.

[71]  J. Schaye,et al.  The Enrichment History of the Intergalactic Medium—Measuring the C IV/H I Ratio in the Lyα Forest , 2000, astro-ph/0005448.

[72]  H. Schmitt,et al.  Gas properties of H ii and starburst galaxies: relation with the stellar population , 2000, astro-ph/0004160.

[73]  E. Bell,et al.  The stellar populations of spiral galaxies , 1999, astro-ph/9909402.

[74]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[75]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[76]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[77]  C. Martin Properties of Galactic Outflows: Measurements of the Feedback from Star Formation , 1998, astro-ph/9810233.

[78]  H. Kobulnicky,et al.  On Measuring Nebular Chemical Abundances in Distant Galaxies Using Global Emission-Line Spectra , 1998, astro-ph/9811006.

[79]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[80]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[81]  S. Sagan,et al.  Interstellar Abundance Gradients in NGC 2403: Comparison to M33 , 1997 .

[82]  Richard Mushotzky,et al.  Lack of Evolution in the Iron Abundance in Clusters of Galaxies and Implications for the Global Star Formation Rate at High Redshift , 1997, astro-ph/9702149.

[83]  S. McGaugh,et al.  GAS MASS FRACTIONS AND THE EVOLUTION OF SPIRAL GALAXIES , 1996, astro-ph/9612070.

[84]  T. Heckman,et al.  The Nature of Starburst Galaxies , 1996 .

[85]  J. Silk,et al.  On the effects of bursts of massive star formation during the evolution of elliptical galaxies , 1996, astro-ph/9601166.

[86]  A. Kinney,et al.  Ultraviolet to near-infrared spectral distributions of star-forming galaxies: Metallicity and age effects , 1994 .

[87]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[88]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[89]  M. Edmunds General constraints on the effect of gas flows in the chemical evolution of galaxies , 1990 .

[90]  R. Kennicutt,et al.  Oxygen Abundances in Nearby Dwarf Irregular Galaxies , 1989 .

[91]  S. Veilleux,et al.  Spectral Classification of Emission-Line Galaxies , 1986 .

[92]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[93]  B. E. Patchett,et al.  Metal Abundances in Nearby Stars and the Chemical History of the Solar Neighbourhood , 1975 .

[94]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .

[95]  W. Sargent,et al.  Inferences from the Composition of Two Dwarf Blue Galaxies , 1972 .

[96]  M. Schmidt The Rate of Star Formation. II. The Rate of Formation of Stars of Different Mass. , 1963 .

[97]  S. van den Bergh,et al.  The frequency of stars with different metal abundances. , 1962 .

[98]  E. Salpeter The Luminosity function and stellar evolution , 1955 .