Sparse grid collocation schemes for stochastic natural convection problems
暂无分享,去创建一个
[1] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[2] Berend Smit,et al. Understanding molecular simulation: from algorithms to applications , 1996 .
[3] Kenneth E. Torrance,et al. An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces , 2005, SPIE Optics + Photonics.
[4] K. Ritter,et al. On an interpolatory method for high dimensional integration , 1999 .
[5] Christian Soize,et al. Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .
[6] Eberhard Bodenschatz,et al. Recent Developments in Rayleigh-Bénard Convection , 2000 .
[7] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[8] K. N. Seetharamu,et al. Natural convective heat transfer in a fluid saturated variable porosity medium , 1997 .
[9] Daniel M. Tartakovsky,et al. Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..
[10] Daniel M. Tartakovsky,et al. Groundwater flow in heterogeneous composite aquifers , 2002 .
[11] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[12] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[13] N. Zabaras,et al. Using stochastic analysis to capture unstable equilibrium in natural convection , 2005 .
[14] Barbara I. Wohlmuth,et al. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.
[15] I. Babuska,et al. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .
[16] Tong,et al. Turbulent convection over rough surfaces. , 1996, Physical review letters.
[17] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[18] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[19] Daniel M. Tartakovsky,et al. Numerical solutions of moment equations for flow in heterogeneous composite aquifers , 2002 .
[20] George E. Karniadakis,et al. Karhunen-Loeve Representation of Periodic Second-Order Autoregressive Processes , 2004, International Conference on Computational Science.
[21] Daniel M. Tartakovsky,et al. Mean Flow in composite porous media , 2000 .
[22] A. Sarkar,et al. Mid-frequency structural dynamics with parameter uncertainty , 2001 .
[23] George E. Karniadakis,et al. Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..
[24] R. Hilfer,et al. Reconstruction of random media using Monte Carlo methods. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[25] R. Ghanem. Higher Order Sensitivity of Heat Conduction Problems to Random Data Using the Spectral Stochastic Fi , 1999 .
[26] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[27] Raul Tempone Olariaga. Numerical Complexity Analysis of Weak Approximation of Stochastic Differential Equations , 2002 .
[28] Noam Bernstein,et al. Spanning the length scales in dynamic simulation , 1998 .
[29] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[30] Berend Smit,et al. Understanding Molecular Simulations: from Algorithms to Applications , 2002 .
[31] D. Xiu,et al. A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .
[32] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[33] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[34] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[35] K. Ritter,et al. The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .
[36] Nicholas Zabaras,et al. Variational multiscale stabilized FEM formulations for transport equations: stochastic advection- , 2004 .
[37] Nicholas Zabaras,et al. Modelling convection in solidification processes using stabilized finite element techniques , 2005 .
[38] R. Ghanem. Probabilistic characterization of transport in heterogeneous media , 1998 .
[39] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[40] Dongbin Xiu,et al. Performance Evaluation of Generalized Polynomial Chaos , 2003, International Conference on Computational Science.
[41] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[42] Daniel M. Tartakovsky,et al. Moment Differential Equations for Flow in Highly Heterogeneous Porous Media , 2003 .
[43] Dongbin Xiu,et al. Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation , 2005, SIAM J. Sci. Comput..
[44] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .