81‐1: Invited Paper: Data Augmentation for Applying Deep Learning to Display Manufacturing Defect Detection

[1]  Joongsoo Kim,et al.  Deep learning based automatic defect classification in through-silicon Via process: FA: Factory automation , 2018, 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC).

[2]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[3]  J. Schulman,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[4]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[5]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[6]  Venkatesh Saligrama,et al.  Anomaly Detection with Score functions based on Nearest Neighbor Graphs , 2009, NIPS.

[7]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[8]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[9]  Yoshua Bengio,et al.  Scaling learning algorithms towards AI , 2007 .

[10]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).