Global Stability in Chemostat-Type Competition Models with Nutrient Recycling

This note corrects some typos and errors in the paper [S. Ruan and X.‐Z. He, SIAM J. Appl. Math., 58 (1998), pp. 170–192].

[1]  Dmitriĭ Olegovich Logofet,et al.  Stability of Biological Communities , 1983 .

[2]  Gail S. K. Wolkowicz,et al.  A MATHEMATICAL MODEL OF THE CHEMOSTAT WITH A GENERAL CLASS OF FUNCTIONS DESCRIBING NUTRIENT UPTAKE , 1985 .

[3]  Sze-Bi Hsu,et al.  Limiting Behavior for Competing Species , 1978 .

[4]  W. Gurney,et al.  Model of material cycling in a closed ecosystem , 1976, Nature.

[5]  Lawrence Stark Stability and Oscillations , 1968 .

[6]  G. Tullock,et al.  Competitive Exclusion. , 1960, Science.

[7]  T. Hallam,et al.  Nutrient- and density-dependent effects in a producer-consumer model , 1984 .

[8]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics , 1977 .

[9]  Gail S. K. Wolkowicz,et al.  Global Asymptotic Behavior of a Chemostat Model with Discrete Delays , 1997, SIAM J. Appl. Math..

[10]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[11]  William Gurney,et al.  A “strategic” model of material cycling in a closed ecosystem , 1983 .

[12]  D. DeAngelis,et al.  Effects of Nutrient Recycling and Food-Chain Length on Resilience , 1989, The American Naturalist.

[13]  N. Macdonald Time lags in biological models , 1978 .

[14]  R E Ulanowicz,et al.  Mass and energy flow in closed ecosystems. , 1972, Journal of theoretical biology.

[15]  Shigui Ruan,et al.  The effect of delays on stability and persistence in plankton models , 1995 .

[16]  Gail S. K. Wolkowicz,et al.  Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates , 1992 .

[17]  Yasuhiro Takeuchi,et al.  QUALITATIVE PROPERTIES OF CHEMOSTAT EQUATIONS WITH TIME DELAYS , 1995 .

[18]  G. Bischi,et al.  Stability in chemostat equations with delayed nutrient recycling , 1990, Journal of mathematical biology.

[19]  Sze-Bi Hsu,et al.  A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of Micro-Organisms , 1977 .

[20]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[21]  Xue-Zhong He,et al.  Global stability in chemostat-type plankton models with delayed nutrient recycling , 1998 .

[22]  I. Hiscock Communities and Ecosystems , 1970, The Yale Journal of Biology and Medicine.

[23]  H. I. Freedman,et al.  Models of competition in the chemostat with instantaneous and delayed nutrient recycling , 1993 .

[24]  Shigui Ruan,et al.  Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling , 1993 .

[25]  P. Richerson,et al.  Temporal Variation, Spatial Heterogeneity, and Competition for Resources in Plankton Systems: A Theoretical Model , 1985, The American Naturalist.

[26]  G. Bischi,et al.  Effects of time lags on transient characteristics of a nutrient cycling model. , 1992, Mathematical biosciences.

[27]  E O Powell,et al.  Theory of the chemostat. , 1965, Laboratory practice.