Fractals in the Neurosciences, Part I

The natural complexity of the brain, its hierarchical structure, and the sophisticated topological architecture of the neurons organized in micronetworks and macronetworks are all factors contributing to the limits of the application of Euclidean geometry and linear dynamics to the neurosciences. The introduction of fractal geometry for the quantitative analysis and description of the geometric complexity of natural systems has been a major paradigm shift in the last decades. Nowadays, modern neurosciences admit the prevalence of fractal properties such as self-similarity in the brain at various levels of observation, from the microscale to the macroscale, in molecular, anatomic, functional, and pathological perspectives. Fractal geometry is a mathematical model that offers a universal language for the quantitative description of neurons and glial cells as well as the brain as a whole, with its complex three-dimensional structure, in all its physiopathological spectrums. For a holistic view of fractal geometry of the brain, we review here the basic concepts of fractal analysis and its main applications to the basic neurosciences.

[1]  Andreas Reichenbach,et al.  A comparative fractal analysis of various mammalian astroglial cell types , 1992, NeuroImage.

[2]  A. Pellionisz,et al.  Genomics, morphogenesis and biophysics: Triangulation of Purkinje cell development , 2008, The Cerebellum.

[3]  Mariano Sigman,et al.  The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity , 2012, Front. Physio..

[4]  G Landini,et al.  Fractals in microscopy , 2011, Journal of microscopy.

[5]  Mario Nicodemi,et al.  Complexity of chromatin folding is captured by the strings and binders switch model , 2012, Proceedings of the National Academy of Sciences.

[6]  S. Cross,et al.  The Applications of Fractal Geometry in Pathology , 1995 .

[7]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[8]  H. Kolb,et al.  Are there three types of horizontal cell in the human retina? , 1994, The Journal of comparative neurology.

[9]  Herbert F. Jelinek,et al.  Fractal Dimension as a Tool for Classification of Rat Retinal Ganglion Cells , 2008 .

[10]  T. G. Smith,et al.  A Fractal Analysis of Morphological Differentiation of Spinal Cord Neurons in Cell Culture , 1994 .

[11]  H. Jelinek,et al.  Box-Counting and Multifractal Analysis in Neuronal and Glial Classification , 2013 .

[12]  A. Pellionisz,et al.  Recursive Genome Function of the Cerebellum: Geometric Unification of Neuroscience and Genomics , 2021, Handbook of the Cerebellum and Cerebellar Disorders.

[13]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[14]  M. Fiszman,et al.  A single-cell model to study changes in neuronal fractal dimension. , 2001, Methods.

[15]  C D Woodworth,et al.  Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. , 2011, Physical review letters.

[16]  Jan Ellenberg,et al.  Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin , 2009, The EMBO journal.

[17]  R. Pawlinski,et al.  Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods , 2001, Journal of neuroscience research.

[18]  J Trabka,et al.  Differentiation of neurons populations based on fractal dimension. , 1996, Folia morphologica.

[19]  S. Petoukhov The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts , 2011, 1102.3596.

[20]  Lonnie R. Welch,et al.  Advances in Genomic Sequence Analysis and Pattern Discovery , 2011 .

[21]  H. Jelinek,et al.  The morphology and classification of alpha ganglion cells in the rat retinae: A fractal analysis study , 2011, Journal of Neuroscience Methods.

[22]  H. Poincaré La valeur de la science , 1905 .

[23]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[24]  George Sugihara,et al.  Fractals: A User's Guide for the Natural Sciences , 1993 .

[25]  A. Pellionisz The Principle of Recursive Genome Function , 2008, The Cerebellum.

[26]  A. Pellionisz Neural Geometry : Towards a Fractal Model of Neurons , 2014 .

[27]  Diego Guidolin,et al.  Understanding neuronal molecular networks builds on neuronal cellular network architecture , 2008, Brain Research Reviews.

[28]  J. Brandes Dendritic branching patterns in lateral geniculate nucleus following deafferentation. , 1971, Experimental neurology.

[29]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[30]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[31]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[32]  Richard F. Voss,et al.  Multifractals and the Local Connected Fractal Dimension: Classification of Early Chinese Landscape Paintings , 1993 .

[33]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[34]  Dušan Ristanović,et al.  Morphology and cell classification of large neurons in the adult human dentate nucleus: A quantitative study , 2010, Neuroscience Letters.

[35]  C. Cattani,et al.  On the Fractal Geometry of DNA by the Binary Image Analysis , 2013, Bulletin of mathematical biology.

[36]  T. G. Smith,et al.  Early dendrite development in spinal cord cell cultures: A quantitative study , 1993, Journal of neuroscience research.

[37]  Chris Arney Complex Worlds: Uncertain, Unequal, and Unfair , 2013 .

[38]  R. Porter,et al.  A fractal analysis of pyramidal neurons in mammalian motor cortex , 1991, Neuroscience Letters.

[39]  Dariusz Orlowski,et al.  Morphological development of microglia in the postnatal rat brain A quantitative study , 2003, International Journal of Developmental Neuroscience.

[40]  Herbert F. Jelinek,et al.  Exploring Wavelet Transforms for Morphological Differentiation Between Functionally Different Cat Retinal Ganglion Cells , 2003 .

[41]  Lotfi A. Zadeh,et al.  General System Theory , 1962 .

[42]  Antonio Di Ieva,et al.  On the Fractal Nature of Nervous Cell System , 2011, Front. Neuroanat..

[43]  Herbert F. Jelinek,et al.  Differentiating Grades of Microglial Activation with Fractal Analysis , 2008 .

[44]  E. Weibel,et al.  Fractals in Biology and Medicine , 1994 .

[45]  M A Hofman,et al.  The fractal geometry of convoluted brains. , 1991, Journal fur Hirnforschung.

[46]  O. Mărgăritescu,et al.  Fractal analysis of astrocytes in stroke and dementia. , 2009, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[47]  M. Riley,et al.  IN FRACTAL PHYSIOLOGY , 2022 .

[48]  D'arcy W. Thompson On Growth and Form , 1945 .

[49]  Roberto Marcondes Cesar Junior,et al.  Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification , 2005, IEEE Transactions on Medical Imaging.

[50]  G. Losa The fractal geometry of life. , 2009, Rivista di biologia.

[51]  Herbert F Jelinek,et al.  Quantitative analysis of dendritic morphology of the α and δ retinal ganglion cells in the rat: a cell classification study. , 2009, Journal of theoretical biology.

[52]  David T. Rohrbaugh,et al.  Lacunarity definition for ramified data sets based on optimal cover , 2003 .

[53]  G. Elston,et al.  Dendritic branching patterns of pyramidal cells in the visual cortex of the new world marmoset monkey, with comparative notes on the old world macaque monkey , 2001 .

[54]  Shlomo Havlin,et al.  Crumpled globule model of the three-dimensional structure of DNA , 1993 .

[55]  F Flam,et al.  Hints of a language in junk DNA. , 1994, Science.

[56]  Herbert F. Jelinek,et al.  Quantitating the subtleties of microglial morphology with fractal analysis , 2013, Front. Cell. Neurosci..

[57]  Vivien Marmelat,et al.  Fractal fluctuations and complexity: current debates and future challenges. , 2012, Critical reviews in biomedical engineering.

[58]  Gabriel Landini,et al.  The Fractal Laboratory Journal: a new challenge in the post genomic era , 2012 .

[59]  Stephanie Boehm,et al.  Chaos Making A New Science , 2016 .

[60]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[61]  K. Falconer Techniques in fractal geometry , 1997 .

[62]  Herbert F. Jelinek,et al.  Dendritic Branching of Pyramidal Cells in the Visual Cortex of the Nocturnal Owl Monkey: A Fractal Analysis , 2003 .

[63]  H F Jelinek,et al.  Use of fractal theory in neuroscience: methods, advantages, and potential problems. , 2001, Methods.

[64]  Fabio Grizzi,et al.  The complexity of anatomical systems , 2005, Theoretical Biology and Medical Modelling.

[65]  Herbert F. Jelinek,et al.  Categorization of physiologically and morphologically characterized non-?/non-? cat retinal ganglion cells using fractal geometry , 1997 .

[66]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[67]  Gad Getz,et al.  High-order chromatin architecture determines the landscape of chromosomal alterations in cancer , 2011, Nature Biotechnology.

[68]  E. Shakhnovich,et al.  The role of topological constraints in the kinetics of collapse of macromolecules , 1988 .

[69]  L. Mirny The fractal globule as a model of chromatin architecture in the cell , 2011, Chromosome Research.

[70]  G A Ascoli,et al.  Progress and perspectives in computational neuroanatomy , 1999, The Anatomical record.

[71]  Herbert F. Jelinek,et al.  Image Processing of Finite Size Rat Retinal Ganglion Cells Using Multifractal and Local Connected Fractal Analysis , 2004, Australian Conference on Artificial Intelligence.

[72]  J Szentágothai,et al.  Dynamic single unit simulation of a realistic cerebellar network model. , 1973, Brain research.

[73]  S Gaillard,et al.  Identification of living oligodendrocyte developmental stages by fractal analysis of cell morphology , 2001, Journal of neuroscience research.

[74]  H. Stanley,et al.  Multifractal phenomena in physics and chemistry , 1988, Nature.

[75]  T. G. Smith,et al.  Surface complexity of human neocortical astrocytic cells: changes with development, aging, and dementia. , 1995, Journal fur Hirnforschung.

[76]  Bruce J. West,et al.  Complex Worlds: Uncertain, Unequal and Unfair , 2012 .

[77]  Herbert F Jelinek,et al.  Neurons and fractals: how reliable and useful are calculations of fractal dimensions? , 1998, Journal of Neuroscience Methods.

[78]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[79]  Luciano da Fontoura Costa,et al.  Multiscale Fractal Analysis of Cortical Pyramidal Neurons , 2007, Bildverarbeitung für die Medizin.

[80]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[81]  J. Cutting,et al.  Fractal curves and complexity , 1987, Perception & psychophysics.

[82]  Herbert F. Jelinek,et al.  Segmentation of retinal fundus vasculature in nonmydriatic camera images using wavelets: Advanced Segmentation Techniques , 2003 .

[83]  Mariano Sigman,et al.  A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks , 2011, Proceedings of the National Academy of Sciences.

[84]  S S Cross,et al.  FRACTALS IN PATHOLOGY , 1997, The Journal of pathology.

[85]  I. Thompson,et al.  Lucifer yellow, retrograde tracers, and fractal analysis characterise adult ferret retinal ganglion cells , 1992, The Journal of comparative neurology.

[86]  S S Cross,et al.  The application of fractal geometric analysis to microscopic images. , 1994, Micron.

[87]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[88]  Benoit B. Mandelbrot,et al.  Is Nature Fractal? , 1998, Science.

[89]  Herbert F. Jelinek,et al.  Reviewing lacunarity analysis and classification of microglia in neuroscience , 2011 .

[90]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[91]  Benoit B. Mandelbrot,et al.  Les objets fractals : forme, hasard et dimension , 1989 .

[92]  G. Losa,et al.  A contribution to definitions of some fractal concepts , 2013 .

[93]  T N Behar,et al.  Analysis of fractal dimension of O2A glial cells differentiating in vitro. , 2001, Methods.

[94]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[95]  F. Edwards,et al.  Corticosterone reduces dendritic complexity in developing hippocampal CA1 neurons , 2009, Hippocampus.

[96]  E. Bullmore,et al.  Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance , 2008, Journal of Neuroscience Methods.

[97]  Hernán D. Reisin,et al.  Astroglial interlaminar processes in human cerebral cortex: variations in cytoskeletal profiles , 2002, Brain Research.

[98]  H. E. Stanley,et al.  Determination of fractal dimension of physiologically characterized neurons in two and three dimensions , 1995, Journal of Neuroscience Methods.

[99]  W. B. Marks,et al.  A fractal analysis of cell images , 1989, Journal of Neuroscience Methods.

[100]  R. Rocha,et al.  Prognostication of prostate cancer based on TOP2A protein and gene assessment: TOP2A in prostate cancer , 2013, Journal of Translational Medicine.

[101]  M. Pawlak,et al.  SCALING BEHAVIOR OF THE DENDRITIC BRANCHES OF THALAMIC NEURONS , 1993 .

[102]  Nacim Betrouni,et al.  Fractal and multifractal analysis: A review , 2009, Medical Image Anal..