On positive local combinatorial dividing-lines in model theory

We introduce the notion of positive local combinatorial dividing-lines in model theory. We show these are equivalently characterized by indecomposable algebraically trivial Fraïssé classes and by complete prime filter classes. We exhibit the relationship between this and collapse-of-indiscernibles dividing-lines. We examine several test cases, including those arising from various classes of hypergraphs.

[1]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[2]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[3]  S. Shelah,et al.  Existence of optimal ultrafilters and the fundamental complexity of simple theories , 2014, 1404.2919.

[4]  Jaroslav Nesetril,et al.  Bowtie-free graphs have a Ramsey lift , 2014, Adv. Appl. Math..

[5]  D. Marker Model theory : an introduction , 2002 .

[6]  S. Shelah,et al.  Keisler’s order has infinitely many classes , 2015, 1503.08341.

[7]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[9]  Michael C. Laskowski,et al.  On Generic Structures , 1992, Notre Dame J. Formal Log..

[10]  Lynn Scow,et al.  Characterizing model-theoretic dividing lines via collapse of generalized indiscernibles , 2015, Ann. Pure Appl. Log..

[11]  Bradd Hart,et al.  Stability Theory and its Variants , 2000 .

[12]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[13]  Richard Kaye,et al.  On Interpretations of Arithmetic and Set Theory , 2007, Notre Dame J. Formal Log..

[14]  Jaroslav Nesetril,et al.  Ramsey classes with forbidden homomorphisms and a closure , 2015, Electron. Notes Discret. Math..

[15]  Victor Harnik,et al.  Review: S. Shelah, Classification Theory and the Number of Nonisomorphic Models , 1982, Journal of Symbolic Logic.

[16]  W. Hodges CLASSIFICATION THEORY AND THE NUMBER OF NON‐ISOMORPHIC MODELS , 1980 .

[17]  Vincent Guingona,et al.  On a common generalization of Shelah's 2-rank, dp-rank, and o-minimal dimension , 2015, Ann. Pure Appl. Log..

[18]  M. E. Malliaris Realization of phi-types and Keisler's order , 2009, Ann. Pure Appl. Log..

[19]  Hans Adler A Geometric Introduction to Forking and Thorn-Forking , 2009, J. Math. Log..

[20]  M. E. Malliaris,et al.  Hypergraph sequences as a tool for saturation of ultrapowers , 2012, The Journal of Symbolic Logic.

[21]  Jan Hubivcka,et al.  Bowtie-free graphs have a Ramsey lift , 2014 .

[22]  Lynn Scow Characterization of NIP theories by ordered graph-indiscernibles , 2012, Ann. Pure Appl. Log..

[23]  Hans Adler Explanation of Independence , 2005 .

[24]  Jaroslav Nesetril,et al.  All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms) , 2016, ArXiv.

[25]  Manuel Bodirsky New Ramsey Classes from Old , 2014, Electron. J. Comb..