The Dynamics of Detonation in Explosive Systems

This article reviews advances in modeling condensed-phase explosive detonation waves and their interaction with inerts for precision applications. We describe how constitutive data are obtained for a basic, predictive hydrodynamic model for explosives that subsequently can be studied numerically and analytically. Theory for multidimensional, time-dependent detonation dynamics is reviewed with a focus on freely propagating detonation and the asymptotic theory for quasi-one-dimensional, quasi-steady, detonation shock evolution (detonation shock dynamics). We discuss verification of these theories by direct numerical simulation (DNS) and validation by experiment. We describe a subscale model of detonation that uses an evolution equation to predict detonation dynamics and front states in complex engineering geometries that otherwise could not be computed by DNS. Four areas for future research are identified.

[1]  Modeling flows with curved detonation waves , 1996 .

[2]  A. Kerstein,et al.  Field equation for interface propagation in an unsteady homogeneous flow field. , 1988, Physical review. A, General physics.

[3]  Rupert Klein,et al.  The Relation Between Curvature, Rate State-Dependence, and Detonation Velocity , 1993, SIAM J. Appl. Math..

[4]  D. D. Bloomquist,et al.  Optically recording interferometer for velocity measurements with subnanosecond resolution , 1983 .

[5]  M. Matsukawa,et al.  On the dual property and the limit of hydrogen- oxygen free detonation waves , 1970 .

[6]  John B. Bdzil,et al.  A study of the steady‐state reaction‐zone structure of a homogeneous and a heterogeneous explosive , 1983 .

[7]  Tariq D. Aslam,et al.  Extensions to DSD theory: Analysis of PBX 9502 rate stick data , 1998 .

[8]  M. Short A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with chain-branching kinetics , 2001, Journal of Fluid Mechanics.

[9]  Per-Anders Persson,et al.  Rock Blasting and Explosives Engineering , 1993 .

[10]  Towards the miniaturization of explosive technology , 2002 .

[11]  John B. Bdzil,et al.  On the structure and accuracy of programmed burn , 2006 .

[12]  Asymptotic theory of evolution and failure of self-sustained detonations , 2005, Journal of Fluid Mechanics.

[13]  Eric N. Ferm,et al.  Proton Radiography Examination of Unburned Regions in PBX 9502 Corner Turning Experiments , 2001 .

[14]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[15]  Jin Yao,et al.  On the dynamics of multi-dimensional detonation , 1996, Journal of Fluid Mechanics.

[16]  M. Sam Shaw Direct Simulation of Detonation Products Equation of State , 2004 .

[17]  Links between detonation wave propagation and reactive flow models. , 2002 .

[18]  W. C. Davis,et al.  Detonation: Theory and Experiment , 1979 .

[19]  H. Jones A theory of the dependence of the rate of detonation of solid explosives on the diameter of the charge , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  John B. Bdzil,et al.  Time-dependent two-dimensional detonation: the interaction of edge rarefactions with finite-length reaction zones , 1986, Journal of Fluid Mechanics.

[21]  J. Forbes,et al.  Detonation wave velocity and curvature of a plastic-bonded, nonideal explosive PBXN-111 as a function of diameter and confinement , 1998 .

[22]  E. Ables,et al.  Proton radiography , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[23]  Curved detonation fronts in solid explosives: Collisions and boundary interactions , 1995 .

[24]  J. N. Fritz,et al.  OVERDRIVEN-DETONATION AND SOUND-SPEED MEASUREMENTS IN PBX-9501 AND THE THERMODYNAMIC CHAPMAN-JOUGUET PRESSURE , 1996 .

[25]  L. G. Hill,et al.  W-76 PBX 9501 cylinder tests , 1998 .

[26]  M. Knudson,et al.  Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer , 1999 .

[27]  Interactions of Inert Confiners with Explosives , 2006 .

[28]  Henry Eyring,et al.  The Stability of Detonation. , 1949 .

[29]  T. L. Jackson,et al.  Program burn algorithms based on detonation shock dynamics: discrete approximations of detonation flows with discontinuous front models , 2001 .

[30]  M. Short A parabolic linear evolution equation for cellular detonation instability , 1997 .

[31]  W. F. Hemsing,et al.  Velocity sensing interferometer (VISAR) modification. , 1979, The Review of scientific instruments.

[32]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[33]  Computation of shock acceleration effects on detonation shock dynamics for explosives described by general equation of state , 2000 .

[34]  L. G. Hill,et al.  Electromagnetic gauge measurements of shock initiating PBX9501 and PBX9502 explosives , 1998 .

[35]  James A. Fay,et al.  Two‐Dimensional Gaseous Detonations: Velocity Deficit , 1959 .

[36]  David E. Lambert,et al.  Experimental validation of detonation shock dynamics in condensed explosives , 2005, Journal of Fluid Mechanics.

[37]  W. W. Wood,et al.  Diameter Effect in Condensed Explosives. The Relation between Velocity and Radius of Curvature of the Detonation Wave , 1954 .

[38]  Jin Yao,et al.  On the normal detonation shock velocity-curvature relationship for materials with large activation energy☆ , 1995 .

[39]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[40]  J. Bdzil,et al.  Self-sustaining, weakly curved, imploding pathological detonation , 2005 .

[41]  J. Erpenbeck,et al.  Theory of detonation stability , 1969 .

[42]  T. Aslam,et al.  DSD front models : nonideal explosive detonation , 2001 .

[43]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[44]  W. C. Davis Maximizing Exposure-Limited Resolution of Practical Rotating Mirror Cameras , 1964 .

[45]  G. Sharpe,et al.  Steady Non-ideal Detonations in Cylindrical Sticks of Explosives , 2005 .

[46]  Propagation laws for steady curved detonations with chain-branching kinetics , 2003, Journal of Fluid Mechanics.

[47]  S. Son,et al.  Characterization of HMX particles in PBX 9501 , 1997 .

[48]  R. R. Alcon,et al.  IN-SITU MAGNETIC GAUGING TECHNIQUE USED AT LANL , 1999 .

[49]  D. Stewart,et al.  Level Set Methods Applied to Modeling Detonation Shock Dynamics , 1996 .

[50]  The Normal Detonation Shock Velocity–Curvature Relationship for Materials with Nonideal Equation of State and Multiple Turning Points , 1998 .

[51]  John B. Bdzil,et al.  Modeling two‐dimensional detonations with detonation shock dynamics , 1989 .

[52]  John B. Bdzil,et al.  The shock dynamics of stable multidimensional detonation , 1988 .

[53]  André Vantomme,et al.  Site location of Co in beta-FeSi2 , 2005 .

[54]  J. B. Bdzil,et al.  Steady-state two-dimensional detonation , 1981, Journal of Fluid Mechanics.

[55]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[56]  K. Takayama,et al.  SHOCK WAVE/GEOPHYSICAL AND MEDICAL APPLICATIONS , 2004 .

[57]  James Jones The spherical detonation , 1991 .

[58]  C. Tarver,et al.  Reactive Flow Modeling of the Interaction of TATB Detonation Waves with Inert Materials , 2002 .

[59]  L. Hill,et al.  Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO , 2002 .

[60]  G. B. Whitham,et al.  A new approach to problems of shock dynamics Part 2. Three-dimensional problems , 1957, Journal of Fluid Mechanics.

[61]  William C. Davis Introduction to Explosives , 1998 .

[62]  D. Stewart,et al.  A hybrid level set method for modelling detonation and combustion problems in complex geometries , 2005 .

[63]  Tariq D. Aslam,et al.  Front curvature rate stick measurements and detonation shock dynamics calibration for PBX 9502 over a wide temperature range , 1998 .

[64]  R. A. Catanach,et al.  DSD front models: nonideal explosive detonation in ANFO , 2002 .

[65]  James Arthur Nicholls,et al.  The influence of a compressible boundary on the propagation of gaseous detonations , 1965 .

[66]  M. Sichel A hydrodynamic theory for the propagation of gaseous detonations through charges of finite width. , 1966 .

[67]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[68]  John B. Bdzil,et al.  A lecture on detonation-shock dynamics , 1987 .

[69]  S. McGrane,et al.  Shock induced reaction observed via ultrafast infrared absorption in poly(vinyl nitrate) films , 2004 .

[70]  S. McGrane,et al.  Spectrally modified chirped pulse generation of sustained shock waves , 2002 .

[71]  Bruce Bukiet,et al.  Competition between curvature and chemistry in a spherically expanding detonation , 1988 .

[72]  J. Buckmaster,et al.  Pressure Transients and the Genesis of Transverse Shocks in Unstable Detonations , 1988 .

[73]  P. Clavin,et al.  On the direct initiation of gaseous detonations by an energy source , 1994, Journal of Fluid Mechanics.

[74]  R. Klein Analysis of Accelerating Detonation Using Large Activation Energy Asymptotics , 1995 .

[75]  D. Dlott Ultrafast spectroscopy of shock waves in molecular materials. , 1999, Annual review of physical chemistry.

[76]  Blaine W. Asay,et al.  Synchro-ballistic recording of detonation phenomena , 1997, Optics & Photonics.

[77]  Tariq D. Aslam,et al.  Detonation shock dynamics and comparisons with direct numerical simulation , 1999 .

[78]  Craig M. Tarver,et al.  Corner Turning Rib Tests on LX-17 , 1998 .

[79]  R. Klein,et al.  Weakly Nonlinear Dynamics of Near-CJ Detonation Waves,Combustion in High-Speed Flows , 1994 .