Design centering and polyhedral region approximation via parallel-cuts ellipsoidal technique

A new technique for constructing a polyhedral approximation of the feasible region and finding the associated design center through a parallel-cuts ellipsoidal technique is presented. The linearizations of the feasible region boundary required to implement the parallel-cuts ellipsoidal technique are saved from one iteration to another in a non-redundant form. These linearizations are used in the construction of the parallel cuts as well as in the generation of an exterior polyhedral approximation of the feasible region at no additional cost. Numerical and practical examples are given to demonstrate the effectiveness of the new technique.

[1]  Sung-Mo Kang,et al.  Convexity-based algorithms for design centering , 1993, ICCAD '93.

[2]  M. A. Styblinski,et al.  Algorithms and Software Tools for IC Yield Optimization Based on Fundamental Fabrication Parameters , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[4]  Sung-Mo Kang,et al.  Statistical Performance Modeling and Parametric Yield Estimation of MOS VLSI , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[5]  G. Hachtel,et al.  Computationally efficient yield estimation procedures based on simplicial approximation , 1978 .

[6]  Kumaraswamy Ponnambalam,et al.  A unified approach to statistical design centering of integrated circuits with correlated parameters , 1999 .

[7]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[8]  K. Singhal,et al.  Statistical design centering and tolerancing using parametric sampling , 1981 .

[9]  J. Bandler,et al.  Yield optimization for arbitrary statistical distributions: Part I-Theory , 1980 .

[10]  Michael J. Todd On Minimum Volume Ellipsoids Containing Part of a Given Ellipsoid , 1982, Math. Oper. Res..

[11]  Hany L. Abdel-Malek,et al.  A boundary gradient search technique and its applications in design centering , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[13]  I. M. Sobolʹ The Monte Carlo method , 1974 .

[14]  Abdel-Karim S.O. Hassan,et al.  Statistical circuit design with the use of a modified ellipsoidal technique , 1997 .

[15]  H. König,et al.  On Khachian's algorithm and minimal ellipsoids , 1980 .

[16]  Michel Nakhla,et al.  A neural network modeling approach to circuit optimization and statistical design , 1995 .

[17]  John W. Bandler,et al.  Yield estimation for efficient design centring assuming arbitrary statistical distributions , 1978 .

[18]  Hany L. Abdel-Malek,et al.  The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Timothy N. Trick,et al.  An Extrapolated Yield Approximation Technique for Use in Yield Maximization , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.