Role of gap genes in early Drosophila development.

Publisher Summary The organization of the Drosophila embryo along its anteroposterior axis is metameric, that is, the embryo is composed of serially repeated units, or body segments, each of which acquires a unique morphology according to its position in the embryo. Many of the genes that control the formation of the metameric pattern have been analyzed at the molecular level, and the spatiotemporal patterns of their expression have been visualized by RNA in situ hybridization and by immune histochemical techniques. This chapter discusses the role of gap genes in establishing the metameric body pattern of the Drosophila embryo. Standing highest in the hierarchy of zygotic genes, the gap genes provide a link between the maternally installed information and the subsequent zygotic gene expression. The charter also describes how the domains of gap gene expression become established under the influence of the maternal gene products and discusses the relevance of interactions among the gap genes in the establishment of their patterns. It examines the function of the gap genes. This chapter summarizes the study of expression patterns of the relevant genes both in the wild type and under various mutant conditions, focusing on the regulatory relationships between them.

[1]  C. Nüsslein-Volhard,et al.  Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid , 1986, Nature.

[2]  H. Jäckle,et al.  Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products , 1987, Cell.

[3]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[4]  M. Levine,et al.  Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila. , 1988, The EMBO journal.

[5]  C. Nüsslein-Volhard,et al.  Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. , 1984, Developmental biology.

[6]  G. Struhl,et al.  A molecular gradient in early Drosophila embryos and its role in specifying the body pattern , 1986, Nature.

[7]  E. Lewis DEVELOPMENTAL GENETICS OF THE BITHORAX COMPLEX IN DROSOPHILA , 1981 .

[8]  C. Nüsslein-Volhard,et al.  Function of torso in determining the terminal anlagen of the Drosophila embryo , 1988, Nature.

[9]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[10]  Ruth Lehmann,et al.  Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in drosophila , 1986, Cell.

[11]  R. Lehmann,et al.  Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo , 1987, Nature.

[12]  H. Jäckle,et al.  Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps , 1988, Nature.

[13]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[14]  Detlef Weigel,et al.  Regulation of Krüppel expression in the anlage of the Malpighian tubules in the Drosophila embryo , 1990, Mechanisms of Development.

[15]  C. Nüsslein-Volhard,et al.  A gradient of bicoid protein in Drosophila embryos , 1988, Cell.

[16]  P. O’Farrell,et al.  Spatial programming of gene expression in early Drosophila embryogenesis. , 1986, Annual review of cell biology.

[17]  R. Lehmann,et al.  A gap gene, hunchback, regulates the spatial expression of Ultrabithorax , 1986, Cell.

[18]  B. Alberts,et al.  Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. , 1983, Journal of cell science.

[19]  Aaron Klug,et al.  ‘Zinc fingers’: a novel protein motif for nucleic acid recognition , 1987 .

[20]  A. Simcox,et al.  When does determination occur in Drosophila embryos? , 1983, Developmental biology.

[21]  H. Meinhardt,et al.  Hierarchical Inductions of Cell States: A Model for Segmentation in Drosophila , 1986, Journal of Cell Science.

[22]  J. Lengyel,et al.  The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. , 1986, Developmental biology.

[23]  Diethard Tautz,et al.  Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes , 1987, Nature.

[24]  W. Janning,et al.  The segmentation gene Krüppel of Drosophila melanogaster has homeotic properties. , 1989, Genes & development.

[25]  W. Gehring,et al.  Localization of the Antennapedia protein in Drosophila embryos and imaginal discs , 1986, The EMBO journal.

[26]  H. Jäckle,et al.  Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA , 1986, Nature.

[27]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[28]  H. Jäckle,et al.  The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo , 1989, Cell.

[29]  M. Akam,et al.  The molecular basis for metameric pattern in the Drosophila embryo. , 1987, Development.

[30]  M. Frasch,et al.  Characterization and localization of the even‐skipped protein of Drosophila. , 1987, The EMBO journal.

[31]  M. Frasch,et al.  Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. , 1987, Genes & development.

[32]  F. Turner,et al.  Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. , 1984, Developmental biology.

[33]  J. Kishi,et al.  Accumulation of collagen III at the cleft points of developing mouse submandibular epithelium. , 1988, Development.

[34]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[35]  Diethard Tautz,et al.  Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene , 1989, Nature.

[36]  S. Carroll,et al.  The localization and regulation of Antennapedia protein expression in Drosophila embryos , 1986, Cell.

[37]  R. Lehmann,et al.  Cross-regulatory interactions among the gap genes of Drosophila , 1986, Nature.

[38]  G. Odell,et al.  A genetic switch, based on negative regulation, sharpens stripes in Drosophila embryos. , 1989, Developmental genetics.

[39]  R. Evans,et al.  Zinc fingers: Gilt by association , 1988, Cell.

[40]  S. Carroll,et al.  Zygotically active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis , 1986, Cell.

[41]  W. Gehring,et al.  Determination of blastoderm cells in Drosophila melanogaster. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Ish-Horowicz,et al.  Correlative changes in homoeotic and segmentation gene expression in Krüppel mutant embryos of Drosophila , 1986, The EMBO journal.

[43]  E Seifert,et al.  Analysis of Krüppel protein distribution during early Drosophila development reveals posttranscriptional regulation , 1987, Cell.

[44]  S. Carroll,et al.  Expression, function, and regulation of the hairy segmentation protein in the Drosophila embryo. , 1988, Genes & development.

[45]  H. Jäckle,et al.  Molecular genetics of Krüppel, a gene required for segmentation of the Drosophila embryo , 1985, Nature.

[46]  N. Perrimon,et al.  Region-specific defects in l(1)giant embryos of Drosophila melanogaster. , 1987, Developmental biology.

[47]  H. Jäckle,et al.  Disruption of a putative Cys–zinc interaction eliminates the biological activity of the Krüppel finger protein , 1988, Nature.

[48]  R. Lehmann,et al.  Determination of anteroposterior polarity in Drosophila. , 1987, Science.

[49]  H. Jäckle,et al.  How to fill a gap in the Drosophila embryo , 1987 .

[50]  E Seifert,et al.  Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. , 1988, The EMBO journal.

[51]  R. Lehmann,et al.  hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. , 1987, Developmental biology.

[52]  D Bopp,et al.  The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. , 1988, The EMBO journal.

[53]  H. Jäckle,et al.  Analysis of maternal effect mutant combinations elucidates regulation and function of the overlap of hunchback and Krüppel gene expression in the Drosophila blastoderm embryo. , 1989, Development.

[54]  C. Nüsslein-Volhard,et al.  Maternal genes required for the anterior localization of bicoid activity in the embryo of Drosophila , 1987 .

[55]  H. Jäckle,et al.  Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos , 1985, Nature.

[56]  P. Ingham,et al.  The correct activation of Antennapedia and bithorax complex genes requires the fushi tarazu gene , 1986, Nature.