A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws†
暂无分享,去创建一个
[1] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[2] L. Gosse. Analyse et approximation numérique de systèmes hyperboliques de lois de conservation avec termes sources. Application aux équations d'Euler et à un modèle simplifié d'écoulements diphasiques. , 1997 .
[3] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[4] J. Nédélec,et al. First order quasilinear equations with boundary conditions , 1979 .
[5] N. N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .
[6] A. I. Vol'pert. THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .
[7] Laurent Gosse,et al. Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes , 1996 .
[8] C. Makridakis,et al. Convergence and error estimates of relaxation schemes for multidimensional conservation laws , 1999 .