Characterization of Quantum Frequency Processors

Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications, suggesting valuable opportunities for quantum networking with the existing fiber-optic infrastructure. Although the coherent manipulation of frequency-bin states requires highly controllable multi-spectral-mode interference, the quantum frequency processor (QFP) provides a scalable path for gate synthesis leveraging standard telecom components. Here we summarize the state of the art in experimental QFP characterization. Distinguishing between physically motivated ''open box'' approaches that treat the QFP as a multiport interferometer, and ''black box'' approaches that view the QFP as a general quantum operation, we highlight the assumptions and results of multiple techniques, including quantum process tomography of a tunable beamsplitter -- to our knowledge the first full process tomography of any frequency-bin operation. Our findings should inform future characterization efforts as the QFP increasingly moves beyond proof-of-principle tabletop demonstrations toward integrated devices and deployed quantum networking experiments.

[1]  Joseph C. Chapman,et al.  Coexistent Quantum Channel Characterization Using Spectrally Resolved Bayesian Quantum Process Tomography , 2022, Physical Review Applied.

[2]  A. Weiner,et al.  Complete Frequency-Bin Bell Basis Synthesizer. , 2022, Physical review letters.

[3]  Navin B. Lingaraju,et al.  Design Methodologies for Integrated Quantum Frequency Processors , 2022, Journal of Lightwave Technology.

[4]  Joseph C. Chapman,et al.  Bayesian homodyne and heterodyne tomography. , 2022, Optics express.

[5]  Navin B. Lingaraju,et al.  High-dimensional discrete Fourier transform gates with a quantum frequency processor. , 2022, Optics express.

[6]  Navin B. Lingaraju,et al.  Bell state analyzer for spectrally distinct photons , 2021, Optica.

[7]  Mohammed S. Alshaykh,et al.  Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements , 2021, Nature Communications.

[8]  M. Lončar,et al.  On-chip electro-optic frequency shifters and beam splitters , 2021, Nature.

[9]  S. Guha,et al.  Non-Gaussian photonic state engineering with the quantum frequency processor , 2021, Physical Review A.

[10]  Navin B. Lingaraju,et al.  2022 Roadmap on integrated quantum photonics , 2021, Journal of Physics: Photonics.

[11]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[12]  K. Życzkowski,et al.  Generating random quantum channels , 2020, Journal of Mathematical Physics.

[13]  Emma M. Simmerman,et al.  Fully Arbitrary Control of Frequency-Bin Qubits. , 2020, Physical review letters.

[14]  Hsuan-Hao Lu,et al.  Agile frequency transformations for dense wavelength-multiplexed communications. , 2020, Optics express.

[15]  Bok Young Kim,et al.  Frequency-Domain Quantum Interference with Correlated Photons from an Integrated Microresonator. , 2020, Physical review letters.

[16]  A. Jasra,et al.  A practical and efficient approach for Bayesian quantum state estimation , 2020, New Journal of Physics.

[17]  Joseph M. Lukens,et al.  All-Optical Frequency Processor for Networking Applications , 2019, Journal of Lightwave Technology.

[18]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[19]  A. Weiner,et al.  Quantum Information Processing With Frequency-Comb Qudits , 2019, IEEE Photonics Technology Letters.

[20]  O. Pfister Continuous-variable quantum computing in the quantum optical frequency comb , 2019, Journal of Physics B: Atomic, Molecular and Optical Physics.

[21]  Christian Reimer,et al.  Quantum optical microcombs , 2019, Nature Photonics.

[22]  Andrew M. Weiner,et al.  Simulations of subatomic many-body physics on a quantum frequency processor , 2018, Physical Review A.

[23]  Poolad Imany,et al.  A controlled-NOT gate for frequency-bin qubits , 2018, npj Quantum Information.

[24]  A. Weiner,et al.  Quantum interference and correlation control of frequency-bin qubits , 2018, Optica.

[25]  Andrew M. Weiner,et al.  Frequency-domain Hong-Ou-Mandel interference with linear optics. , 2018, Optics letters.

[26]  Pavel Lougovski,et al.  Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. , 2017, Physical review letters.

[27]  Daniel J Gauthier,et al.  Provably secure and high-rate quantum key distribution with time-bin qudits , 2017, Science Advances.

[28]  M. Koashi,et al.  Mach-Zehnder interferometer using frequency-domain beamsplitter. , 2017, Optics express.

[29]  Pavel Lougovski,et al.  Quantum state estimation when qubits are lost: a no-data-left-behind approach , 2016, 1610.03714.

[30]  Pierre Alquier,et al.  Pseudo-Bayesian quantum tomography with rank-adaptation , 2016, 1605.05933.

[31]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[32]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[33]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[34]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[35]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[36]  A. Gaeta,et al.  Ramsey Interference with Single Photons. , 2016, Physical review letters.

[37]  Masato Koashi,et al.  Frequency-domain Hong–Ou–Mandel interference , 2016, Nature Photonics.

[38]  Christopher Granade,et al.  Practical Bayesian tomography , 2015, 1509.03770.

[39]  B. Brecht,et al.  Photon temporal modes: a complete framework for quantum information science , 2015, 1504.06251.

[40]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  D. Nott,et al.  Monte Carlo sampling from the quantum state space. II , 2014, 1407.7805.

[42]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[43]  D. Nott,et al.  Monte Carlo sampling from the quantum state space. I , 2015 .

[44]  Alan E. Willner,et al.  All-Optical Signal Processing , 2014, Journal of Lightwave Technology.

[45]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[46]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[47]  Nicolò Spagnolo,et al.  Three-photon bosonic coalescence in an integrated tritter , 2012, Nature Communications.

[48]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[49]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[50]  S. Brierley,et al.  Entanglement detection via mutually unbiased bases , 2012, 1202.5058.

[51]  A. Weiner Ultrafast optical pulse shaping: A tutorial review , 2011 .

[52]  A. Politi,et al.  Multimode quantum interference of photons in multiport integrated devices , 2010, Nature communications.

[53]  Brett J. Pearson,et al.  A hands-on introduction to single photons and quantum mechanics for undergraduates , 2010 .

[54]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[55]  S. J. van Enk,et al.  Interference of two photons of different color , 2010, 1002.0350.

[56]  E. Ippen,et al.  Optical arbitrary waveform generation , 2007, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[57]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[58]  C. Messenger,et al.  Markov chain Monte Carlo estimation of quantum states , 2009, 0902.4603.

[59]  Jonathan P. Dowling,et al.  Maximal success probabilities of linear-optical quantum gates , 2008, 0808.1926.

[60]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[61]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[62]  N. C. Menicucci,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[63]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[64]  Johannes Skaar,et al.  Quantum mechanical description of linear optics , 2004 .

[65]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[66]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[67]  Andrew G. White,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[68]  Radford M. Neal Slice Sampling , 2000, physics/0009028.

[69]  Thomas J. Ostrand,et al.  Black‐Box Testing , 2002 .

[70]  Thomas J. Ostrand,et al.  White‐Box Testing , 2002 .

[71]  T. Ralph,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2001, quant-ph/0112088.

[72]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[73]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[74]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[75]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[76]  I. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1996, quant-ph/9610001.

[77]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[78]  Carl Eckart,et al.  Accidental Coincidences in Counter Circuits , 1938 .