What can quantum theory bring to information retrieval

The probabilistic formalism of quantum physics is said to provide a sound basis for building a principled information retrieval framework. Such a framework can be based on the notion of information need vector spaces where events, such as document relevance or observed user interactions, correspond to subspaces. As in quantum theory, a probability distribution over these subspaces is defined through weighted sets of state vectors (density operators), and used to represent the current view of the retrieval system on the user information need. Tensor spaces can be used to capture different aspects of information needs. Our evaluation shows that the framework can lead to acceptable performance in an ad-hoc retrieval task. Going beyond this, we discuss the potential of the framework for three active challenges in information retrieval, namely, interaction, novelty and diversity.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Jia Zeng,et al.  A “stereo” document representation for textual information retrieval , 2006 .

[3]  C. J. van Rijsbergen,et al.  Semantic Spaces: Measuring the Distance between Different Subspaces , 2009, QI.

[4]  Peter Ingwersen,et al.  The Turn - Integration of Information Seeking and Retrieval in Context , 2005, The Kluwer International Series on Information Retrieval.

[5]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[6]  Guido Zuccon,et al.  Using the Quantum Probability Ranking Principle to Rank Interdependent Documents , 2010, ECIR.

[7]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[8]  W. Bruce Croft,et al.  Combining the language model and inference network approaches to retrieval , 2004, Inf. Process. Manag..

[9]  James Allan,et al.  Relevance feedback with too much data , 1995, SIGIR '95.

[10]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[11]  C. J. van Rijsbergen,et al.  Filtering Documents with Subspaces , 2010, ECIR.

[12]  W. Bruce Croft,et al.  LDA-based document models for ad-hoc retrieval , 2006, SIGIR.

[13]  Curt Burgess,et al.  Explorations in context space: Words, sentences, discourse , 1998 .

[14]  Mark D. Dunlop The effect of accessing nonmatching documents on relevance feedback , 1997, TOIS.

[15]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[16]  Hong Xie,et al.  Shifts of interactive intentions and information-seeking strategies in interactive information retrieval , 2000, Journal of the American Society for Information Science.

[17]  Massimo Melucci,et al.  A basis for information retrieval in context , 2008, TOIS.

[18]  Zhoujun Li,et al.  Promoting Ranking Diversity for Biomedical Information Retrieval Using Wikipedia , 2010, ECIR.

[19]  ChengXiang Zhai,et al.  A study of methods for negative relevance feedback , 2008, SIGIR '08.

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  C. J. van Rijsbergen,et al.  Exploring a multidimensional representation of documents and queries , 2010, RIAO.

[22]  Mounia Lalmas,et al.  A Quantum-Based Model for Interactive Information Retrieval , 2009, ICTIR.